Skip to main content

Methods for Assessing Mast Cell Responses to Engineered Nanomaterial Exposure

  • Protocol
  • First Online:
Nanotoxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1894))

  • 1587 Accesses

Abstract

Mast cells are key effector cells in inflammatory and allergic immune responses such as asthma, rhinitis, and atopic dermatitis. Activation of mast cells leads to immediate release of preformed mediators such as histamine and proteases, which can regulate vascular permeability and the function of a number of immune and nonimmune cells. Engineered nanomaterials (ENM) have been utilized for a wide range of applications and introduced into a number of consumer products; yet the consequent increase in human exposure and any potential adverse effects have not been fully evaluated. Modulation of the immune system function has been shown to be a major toxicological consequence of ENM exposure. The implication of mast cells in ENM-mediated toxicity, including the most widely utilized carbon and metal-based ENMs, has been previously demonstrated; and therefore, understanding direct ENM interaction with mast cells at the cellular and molecular level is of critical importance for the safe implementation of ENMs into consumer products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham SN, St John AL (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10(6):440–452. https://doi.org/10.1038/nri2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6(2):135–142. https://doi.org/10.1038/ni1158

    Article  CAS  PubMed  Google Scholar 

  3. Gilfillan AM, Tkaczyk C (2006) Integrated signalling pathways for mast-cell activation. Nat Rev Immunol 6(3):218–230. https://doi.org/10.1038/nri1782

    Article  CAS  PubMed  Google Scholar 

  4. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Article  Google Scholar 

  5. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780. https://doi.org/10.3762/bjnano.6.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478. https://doi.org/10.1038/nnano.2007.223

    Article  CAS  PubMed  Google Scholar 

  7. Dobrovolskaia MA, Shurin M, Shvedova AA (2016) Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol 299:78–89. https://doi.org/10.1016/j.taap.2015.12.022

    Article  CAS  PubMed  Google Scholar 

  8. Alsaleh NB, Brown JM (2017) Immune responses to engineered nanomaterials: current understanding and challenges. Curr Opin Toxicol. https://doi.org/10.1016/j.cotox.2017.11.011

    Article  Google Scholar 

  9. Aldossari AA, Shannahan JH, Podila R, Brown JM (2015) Influence of physicochemical properties of silver nanoparticles on mast cell activation and degranulation. Toxicol In Vitro 29(1):195–203. https://doi.org/10.1016/j.tiv.2014.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen EY, Garnica M, Wang YC, Mintz AJ, Chen CS, Chin WC (2012) A mixture of anatase and rutile TiO(2) nanoparticles induces histamine secretion in mast cells. Part Fibre Toxicol 9:2. https://doi.org/10.1186/1743-8977-9-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Katwa P, Wang X, Urankar RN, Podila R, Hilderbrand SC, Fick RB, Rao AM, Ke PC, Wingard CJ, Brown JM (2012) A carbon nanotube toxicity paradigm driven by mast cells and the IL-(3)(3)/ST(2) axis. Small 8(18):2904–2912. https://doi.org/10.1002/smll.201200873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wingard CJ, Walters DM, Cathey BL, Hilderbrand SC, Katwa P, Lin S, Ke PC, Podila R, Rao A, Lust RM, Brown JM (2011) Mast cells contribute to altered vascular reactivity and ischemia-reperfusion injury following cerium oxide nanoparticle instillation. Nanotoxicology 5(4):531–545. https://doi.org/10.3109/17435390.2010.530004

    Article  CAS  PubMed  Google Scholar 

  13. Alsaleh NB, Persaud I, Brown JM (2016) Silver nanoparticle-directed mast cell degranulation is mediated through calcium and PI3K signaling independent of the high affinity IgE receptor. PLoS One 11(12):e0167366. https://doi.org/10.1371/journal.pone.0167366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. U.S. Food and Drug Administration (2015) FDA strengthens warnings and changes prescribing instructions to decrease the risk of serious allergic reactions with anemia drug Feraheme (ferumoxytol). https://www.fda.gov/Drugs/DrugSafety/ucm440138.htm

  15. Szebeni J (2005) Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 216(2–3):106–121. https://doi.org/10.1016/j.tox.2005.07.023

    Article  CAS  PubMed  Google Scholar 

  16. Marshall JS (2004) Mast-cell responses to pathogens. Nat Rev Immunol 4(10):787–799. https://doi.org/10.1038/nri1460

    Article  CAS  PubMed  Google Scholar 

  17. Schwartz LB (1994) Mast cells: function and contents. Curr Opin Immunol 6(1):91–97

    Article  CAS  Google Scholar 

  18. Yin Y, Bai Y, Olivera A, Desai A, Metcalfe DD (2017) An optimized protocol for the generation and functional analysis of human mast cells from CD34+ enriched cell populations. J Immunol Methods 448:105–111. https://doi.org/10.1016/j.jim.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maeyama K, Hohman RJ, Metzger H, Beaven MA (1986) Quantitative relationships between aggregation of IgE receptors, generation of intracellular signals, and histamine secretion in rat basophilic leukemia (2H3) cells. Enhanced responses with heavy water. J Biol Chem 261(6):2583–2592

    CAS  PubMed  Google Scholar 

  20. Galli SJ, Tsai M, Piliponsky AM (2008) The development of allergic inflammation. Nature 454(7203):445–454. https://doi.org/10.1038/nature07204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Farre M, Gajda-Schrantz K, Kantiani L, Barcelo D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393(1):81–95. https://doi.org/10.1007/s00216-008-2458-1

    Article  CAS  PubMed  Google Scholar 

  22. Hartmann NB, Jensen KA, Baun A, Rasmussen K, Rauscher H, Tantra R, Cupi D, Gilliland D, Pianella F, Riego Sintes JM (2015) Techniques and protocols for dispersing nanoparticle powders in aqueous media-is there a rationale for harmonization? J Toxicol Environ Health B Crit Rev 18(6):299–326. https://doi.org/10.1080/10937404.2015.1074969

    Article  CAS  PubMed  Google Scholar 

  23. Wittmaack K (2011) Excessive delivery of nanostructured matter to submersed cells caused by rapid gravitational settling. ACS Nano 5(5):3766–3778. https://doi.org/10.1021/nn200112u

    Article  CAS  PubMed  Google Scholar 

  24. Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2012) Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol 86(7):1123–1136. https://doi.org/10.1007/s00204-012-0837-z

    Article  CAS  PubMed  Google Scholar 

  25. Monteiro-Riviere NA, Inman AO, Zhang LW (2009) Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234(2):222–235. https://doi.org/10.1016/j.taap.2008.09.030

    Article  CAS  PubMed  Google Scholar 

  26. Ong KJ, MacCormack TJ, Clark RJ, Ede JD, Ortega VA, Felix LC, Dang MK, Ma G, Fenniri H, Veinot JG, Goss GG (2014) Widespread nanoparticle-assay interference: implications for nanotoxicity testing. PLoS One 9(3):e90650. https://doi.org/10.1371/journal.pone.0090650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jingkun Jiang GO, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89

    Article  Google Scholar 

  28. Love SA, Maurer-Jones MA, Thompson JW, Lin YS, Haynes CL (2012) Assessing nanoparticle toxicity. Annu Rev Anal Chem 5:181–205. https://doi.org/10.1146/annurev-anchem-062011-143134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared M. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alsaleh, N.B., Brown, J.M. (2019). Methods for Assessing Mast Cell Responses to Engineered Nanomaterial Exposure. In: Zhang, Q. (eds) Nanotoxicity. Methods in Molecular Biology, vol 1894. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8916-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8916-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8915-7

  • Online ISBN: 978-1-4939-8916-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics