Skip to main content

Enzymatic Systems with Homology to Nitrogenase: Biosynthesis of Bacteriochlorophyll and Coenzyme F430

  • Protocol
  • First Online:
Metalloproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1876))

Abstract

Enzymes with homology to nitrogenase are essential for the reduction of chemically stable double bonds within the biosynthetic pathways of bacteriochlorophyll and coenzyme F430. These tetrapyrrole-based compounds are crucial for bacterial photosynthesis and the biogenesis of methane in methanogenic archaea. Formation of bacteriochlorophyll requires the unique ATP-dependent enzyme chlorophyllide oxidoreductase (COR) for the two-electron reduction of chlorophyllide to bacteriochlorophyllide. COR catalysis is based on the homodimeric protein subunit BchX2, which facilitates the transfer of electrons to the corresponding heterotetrameric catalytic subunit (BchY/BchZ)2. By analogy to the nitrogenase system, the dynamic switch protein BchX2 contains a [4Fe-4S] cluster that triggers the ATP-driven transfer of electrons onto a second [4Fe-4S] cluster located in (BchY/BchZ)2. The subsequent substrate reduction and protonation is unrelated to nitrogenase catalysis, with no further involvement of a molybdenum-containing cofactor. The biosynthesis of the nickel-containing coenzyme F430 includes the six-electron reduction of the tetrapyrrole macrocycle of Ni2+-sirohydrochlorin a,c-diamide to Ni2+-hexahydrosirohydrochlorin a,c-diamide catalyzed by CfbC/D. The homodimeric CfbC2 subunit carrying a [4Fe-4S] cluster shows close homology to BchX2. Accordingly, parallelism for the initial ATP-driven electron transfer steps of CfbC/D was proposed. Electrons are received by the dimeric catalytic subunit CfbD2, which contains a second [4Fe-4S] cluster and carries out the saturation of an overall of three double bonds in a highly orchestrated spatial and regioselective process. Following a short introduction to nitrogenase catalysis, this chapter will focus on the recent progress toward the understanding of the nitrogenase-like enzymes COR and CfbC/D, with special emphasis on the underlying enzymatic mechanism(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu Y, Ribbe MW (2015) Nitrogenase and homologs. J Biol Inorg Chem 20:435–445

    Article  CAS  Google Scholar 

  2. Thauer RK, Kaster AK, Seedorf H et al (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591

    Article  CAS  Google Scholar 

  3. Appl M (2000) Ammonia. In: Ullmann's encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co, KGaA

    Google Scholar 

  4. Ertl G (2008) Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew Chem Int Ed 47:3524–3535

    Article  CAS  Google Scholar 

  5. Duval S, Danyal K, Shaw S et al (2013) Electron transfer precedes ATP hydrolysis during nitrogenase catalysis. Proc Natl Acad Sci U S A 110:16414–16419

    Article  CAS  Google Scholar 

  6. Einsle O, Tezcan FA, Andrade SL et al (2002) Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297:1696–1700

    Article  CAS  Google Scholar 

  7. Kim J, Rees DC (1992) Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from Azotobacter vinelandii. Nature 360:553–560

    Article  CAS  Google Scholar 

  8. Thorneley RN, Lowe DJ, Eday RR et al (1979) The coupling of electron transfer in nitrogenase to the hydrolysis of magnesium adenosine triphosphate. Biochem Soc Trans 7:633–636

    Article  CAS  Google Scholar 

  9. Tezcan FA, Kaiser JT, Mustafi D et al (2005) Nitrogenase complexes: multiple docking sites for a nucleotide switch protein. Science 309:1377–1380

    Article  CAS  Google Scholar 

  10. Hoffman BM, Lukoyanov D, Yang ZY et al (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062

    Article  CAS  Google Scholar 

  11. Moser J, Brocker MJ (2011) Methods for nitrogenase-like dark operative protochlorophyllide oxidoreductase. Methods Mol Biol 766:129–143

    Article  CAS  Google Scholar 

  12. Moser J, Brocker MJ (2011) Enzymatic systems with homology to nitrogenase. Methods Mol Biol 766:67–77

    Article  CAS  Google Scholar 

  13. Layer G, Krausze J, Moser J (2017) Reduction of chemically stable multibonds: nitrogenase-like biosynthesis of tetrapyrroles. Adv Exp Med Biol 925:147–161

    Article  CAS  Google Scholar 

  14. Reinbothe C, El Bakkouri M, Buhr F et al (2010) Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends Plant Sci 15:614–624

    Article  CAS  Google Scholar 

  15. Moser J, Schubert W-D (2011) Dark-operative protochlorophyllide oxidoreductase. In: Encyclopedia of inorganic and bioinorganic chemistry. John Wiley & Sons, Ltd, Hoboken, New Jersey

    Google Scholar 

  16. Nomata J, Mizoguchi T, Tamiaki H et al (2006) A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis: reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from Rhodobacter capsulatus. J Biol Chem 281:15021–15028

    Article  CAS  Google Scholar 

  17. Moore SJ, Sowa ST, Schuchardt C et al (2017) Elucidation of the biosynthesis of the methane catalyst coenzyme F430. Nature 543:78–82

    Article  CAS  Google Scholar 

  18. Zheng K, Ngo PD, Owens VL et al (2016) The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea. Science 354:339–342

    Article  CAS  Google Scholar 

  19. Cavalier-Smith T (2003) Molecular mechanisms of photosynthesis. Q Rev Biol 78:234–235

    Article  Google Scholar 

  20. Watzlich D, Brocker MJ, Uliczka F et al (2009) Chimeric nitrogenase-like enzymes of (bacterio)chlorophyll biosynthesis. J Biol Chem 284:15530–15540

    Article  Google Scholar 

  21. Burke DH, Hearst JE, Sidow A (1993) Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc Natl Acad Sci U S A 90:7134–7138

    Article  CAS  Google Scholar 

  22. Kiesel S, Watzlich D, Lange C et al (2015) Iron-sulfur cluster-dependent catalysis of chlorophyllide a oxidoreductase from Roseobacter denitrificans. J Biol Chem 290:1141–1154

    Article  CAS  Google Scholar 

  23. Kim EJ, Kim JS, Lee IH et al (2008) Superoxide generation by chlorophyllide a reductase of Rhodobacter sphaeroides. J Biol Chem 283:3718–3730

    Article  CAS  Google Scholar 

  24. Schindelin H, Kisker C, Schlessman JL et al (1997) Structure of ADP•AlF4-stabilized nitrogenase complex and its implications for signal transduction. Nature 387:370–376

    Article  CAS  Google Scholar 

  25. Moser J, Lange C, Krausze J et al (2013) Structure of ADP-aluminium fluoride-stabilized protochlorophyllide oxidoreductase complex. Proc Natl Acad Sci U S A 110:2094–2098

    Article  CAS  Google Scholar 

  26. Tsukatani Y, Yamamoto H, Harada J et al (2013) An unexpectedly branched biosynthetic pathway for bacteriochlorophyll b capable of absorbing near-infrared light. Sci Rep 3:1217

    Article  Google Scholar 

  27. Harada J, Mizoguchi T, Tsukatani Y et al (2014) Chlorophyllide a oxidoreductase works as one of the divinyl reductases specifically involved in bacteriochlorophyll a biosynthesis. J Biol Chem 289:12716–12726

    Article  CAS  Google Scholar 

  28. Tsukatani Y, Yamamoto H, Mizoguchi T et al (2013) Completion of biosynthetic pathways for bacteriochlorophyll g in Heliobacterium modesticaldum: the C8-ethylidene group formation. Biochim Biophys Acta 1827:1200–1204

    Article  CAS  Google Scholar 

  29. Ellefson WL, Whitman WB, Wolfe RS (1982) Nickel-containing factor F430: chromophore of the methylreductase of Methanobacterium. Proc Natl Acad Sci U S A 79:3707–3710

    Article  CAS  Google Scholar 

  30. Friedmann HC, Klein A, Thauer RK (1990) Structure and function of the nickel porphinoid, coenzyme F430 and of its enzyme, methyl coenzyme M reductase. FEMS Microbiol Rev 7:339–348

    Article  CAS  Google Scholar 

  31. Färber G, Keller W, Kratky C et al (1991) Coenzyme F430 from methanogenic bacteria: complete assignment of configuration based on an x-ray analysis of 12,13-diepi-F430 pentamethyl ester and on NMR spectroscopy. Helv Chim Acta 74:697–716

    Article  Google Scholar 

  32. Mayr S, Latkoczy C, Kruger M et al (2008) Structure of an F430 variant from archaea associated with anaerobic oxidation of methane. J Am Chem Soc 130:10758–10767

    Article  CAS  Google Scholar 

  33. Ermler U, Grabarse W, Shima S et al (1997) Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278:1457–1462

    Article  CAS  Google Scholar 

  34. Shima S, Krueger M, Weinert T et al (2011) Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 481:98–101

    Article  Google Scholar 

  35. Moore SJ, Sowa ST, Schuchardt C et al (2017) Corrigendum: elucidation of the biosynthesis of the methane catalyst coenzyme F430. Nature 545:116

    Article  CAS  Google Scholar 

  36. Boyd ES, Peters JW (2013) New insights into the evolutionary history of biological nitrogen fixation. Front Microbiol 4:201

    PubMed  PubMed Central  Google Scholar 

  37. Staples CR, Lahiri S, Raymond J et al (2007) Expression and association of group IV nitrogenase NifD and NifH homologs in the non-nitrogen-fixing archaeon Methanocaldococcus jannaschii. J Bacteriol 189:7392–7398

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jürgen Moser or Gunhild Layer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moser, J., Layer, G. (2019). Enzymatic Systems with Homology to Nitrogenase: Biosynthesis of Bacteriochlorophyll and Coenzyme F430. In: Hu, Y. (eds) Metalloproteins. Methods in Molecular Biology, vol 1876. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8864-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8864-8_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8863-1

  • Online ISBN: 978-1-4939-8864-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics