Skip to main content
Log in

Nitrogenase and homologs

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nitrogenase catalyzes biological nitrogen fixation, a key step in the global nitrogen cycle. Three homologous nitrogenases have been identified to date, along with several structural and/or functional homologs of this enzyme that are involved in nitrogenase assembly, bacteriochlorophyll biosynthesis and methanogenic process, respectively. In this article, we provide an overview of the structures and functions of nitrogenase and its homologs, which highlights the similarity and disparity of this uniquely versatile group of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The heterogeneity of earlier VFe protein preparations, which likely resulted in a mixture of different cluster species, has hampered a thorough investigation of the physiochemical properties of this protein for a long time. Taking advantage of a fast, affinity chromatography-based purification procedure, a His-tagged VFe protein was later purified from A. vinelandii as a homogeneous species with high specific activity [46]. In these homogeneous protein preparations, the P-cluster-associated S = 1/2 signal, which was previously assigned to an inactive protein species, displays a clear correlation to the specific activity of the proteins, suggesting that this P-cluster species (designated the P*-cluster) is associated with an active form of the protein. An identical S = 1/2 signal is also present in a cofactor-deplete, yet P-cluster-replete form of VFe protein, further establishing the P*-cluster as the origin of this S = 1/2 signal. Moreover, the Fe K-edge XAS/EXAFS analysis of this cofactor-deficient VFe protein suggests that the P*-cluster differs from the standard [Fe8S7] structure of the P-cluster and likely consists of paired [Fe4S4]-like clusters [5].

Abbreviations

EPR:

Electron paramagnetic resonance

ENDOR:

Electron-nuclear double resonance

ESEEM:

Electron spin echo envelope modulation

EXAFS:

Extended X-ray absorption fine structure

Fe protein:

Iron protein

FeFe protein:

Iron-iron protein

MoFe protein:

Molybdenum-iron protein

SAXS:

Small angle X-ray scattering

VFe protein:

Vanadium-iron protein

XAS:

X-ray absorption spectroscopy

XES:

X-ray emission spectroscopy

References

  1. Burgess BK, Lowe DJ (1996) Mechanism of molybdenum nitrogenase. Chem Rev 96:2983–3012

    Article  CAS  PubMed  Google Scholar 

  2. Eady RR (1996) Structure-function relationships of alternative nitrogenases. Chem Rev 96:3013–3030

    Article  CAS  PubMed  Google Scholar 

  3. Rees DC, Akif Tezcan F, Haynes CA, Walton MY, Andrade S, Einsle O, Howard JB (2005) Structural basis of biological nitrogen fixation. Philos Trans A Math Phys Eng Sci 363:971–984

    Article  CAS  PubMed  Google Scholar 

  4. Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hu Y, Lee CC, Ribbe MW (2012) Vanadium nitrogenase: a two-hit wonder? Dalton Trans 41:1118–1127

    Article  CAS  PubMed  Google Scholar 

  6. Reinbothe C, El Bakkouri M, Buhr F, Muraki N, Nomata J, Kurisu G, Fujita Y, Reinbothe S (2010) Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends Plant Sci 15:614–624

    Article  CAS  PubMed  Google Scholar 

  7. Moser J, Bröcker MJ (2011) Enzymatic systems with homology to nitrogenase. Methods Mol Biol 766:67–77

    Article  CAS  PubMed  Google Scholar 

  8. Christiansen J, Dean DR, Seefeldt LC (2001) Mechanistic features of the Mo-containing nitrogenase. Annu Rev Plant Physiol Plant Mol Biol 52:269–295

    Article  CAS  PubMed  Google Scholar 

  9. Lawson DM, Smith BE (2002) Molybdenum nitrogenases: a crystallographic and mechanistic view. Met Ions Biol Syst 39:75–119

    CAS  PubMed  Google Scholar 

  10. Eady RR (1995) Vanadium nitrogenases of Azotobacter. Met Ions Biol Syst 31:363–405

    CAS  PubMed  Google Scholar 

  11. Howard JB, Rees DC (1996) Structural basis of biological nitrogen fixation. Chem Rev 96:2965–2982

    Article  CAS  PubMed  Google Scholar 

  12. Georgiadis MM, Komiya H, Chakrabarti P, Woo D, Kornuc JJ, Rees DC (1992) Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science 257:1653–1659

    Article  CAS  PubMed  Google Scholar 

  13. Kim J, Rees DC (1992) Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science 257:1677–1682

    Article  CAS  PubMed  Google Scholar 

  14. Chan MK, Kim J, Rees DC (1993) The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 A resolution structures. Science 260:792–794

    Article  CAS  PubMed  Google Scholar 

  15. Schindelin H, Kisker C, Schlessman JL, Howard JB, Rees DC (1997) Structure of ADP × AIF4––stabilized nitrogenase complex and its implications for signal transduction. Nature 387:370–376

    Article  CAS  PubMed  Google Scholar 

  16. Einsle O, Tezcan FA, Andrade SL, Schmid B, Yoshida M, Howard JB, Rees DC (2002) Nitrogenase MoFe-protein at 1.16 A resolution: a central ligand in the FeMo-cofactor. Science 297:1696–1700

    Article  CAS  PubMed  Google Scholar 

  17. Spatzal T, Aksoyoglu M, Zhang L, Andrade SL, Schleicher E, Weber S, Rees DC, Einsle O (2011) Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334:940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chen L, Gavini N, Tsuruta H, Eliezer D, Burgess BK, Doniach S, Hodgson KO (1994) MgATP-induced conformational changes in the iron protein from Azotobacter vinelandii, as studied by small-angle X-ray scattering. J Biol Chem 269:3290–3294

    CAS  PubMed  Google Scholar 

  19. Eady RR (2003) Current status of structure function relationships of vanadium nitrogenase. Coord Chem Rev 237:23–30

    Article  CAS  Google Scholar 

  20. Lee HI, Hales BJ, Hoffman BM (1997) Metal-ion valencies of the FeMo cofactor in CO-inhibited and resting state nitrogenase by Fe-57 Q-band ENDOR. J Am Chem Soc 119:11395–11400

    Article  CAS  Google Scholar 

  21. Christie PD, Lee HI, Cameron LM, Hales BJ, Orme-Johnson WH, Hoffman BM (1996) Identification of the CO-binding cluster in nitrogenase MoFe protein by ENDOR of Fe-57 isotopomers. J Am Chem Soc 118:8707–8709

    Article  CAS  Google Scholar 

  22. Pollock RC, Lee HI, Cameron LM, Derose VI, Hales BJ, Orme-Johnson WH, Hoffman BM (1995) Investigation of co bound to inhibited forms of nitrogenase MoFe protein by C-13 ENDOR. J Am Chem Soc 117:8686–8687

    Article  CAS  Google Scholar 

  23. Lee HI, Cameron LM, Hales BJ, Hoffman BM (1997) CO binding to the FeMo cofactor of CO-inhibited nitrogenase: (CO)-C-13 and H-1 Q-band ENDOR investigation. J Am Chem Soc 119:10121–10126

    Article  CAS  Google Scholar 

  24. Lee HI, Sorlie M, Christiansen J, Song RT, Dean DR, Hales BJ, Hoffman BM (2000) Characterization of an intermediate in the reduction of acetylene by the nitrogenase alpha-Gln(195) MoFe protein by Q-band EPR and C-13, H-1 ENDOR. J Am Chem Soc 122:5582–5587

    Article  CAS  Google Scholar 

  25. Conradson SD, Burgess BK, Vaughn SA, Roe AL, Hedman B, Hodgson KO, Holm RH (1989) Cyanide and methylisocyanide binding to the isolated iron-molybdenum cofactor of nitrogenase. J Biol Chem 264:15967–15974

    CAS  PubMed  Google Scholar 

  26. Ibrahim SK, Vincent K, Gormal CA, Smith BE, Best SP, Pickett CJ (1999) The isolated iron-molybdenum cofactor of nitrogenase binds carbon monoxide upon electrochemically accessing reduced states. Chem Commun 11:1019–1020

    Article  Google Scholar 

  27. Rebelein JG, Hu Y, Ribbe MW (2014) Differential reduction of CO2 by molybdenum and vanadium nitrogenases. Angew Chem Int Ed Engl. doi:10.1002/anie.201406863

    PubMed  Google Scholar 

  28. Lee CC, Hu Y, Ribbe MW (2012) ATP-independent formation of hydrocarbons catalyzed by isolated nitrogenase cofactors. Angew Chem Int Ed Engl 51:1947–1949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hu Y, Lee CC, Ribbe MW (2011) Extending the carbon chain: hydrocarbon formation catalyzed by vanadium/molybdenum nitrogenases. Science 333:753–755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Lee CC, Hu Y, Ribbe MW (2011) Tracing the hydrogen source of hydrocarbons formed by vanadium nitrogenase. Angew Chem Int Ed Engl 50:5545–5547

    Article  CAS  PubMed  Google Scholar 

  31. Lee CC, Hu Y, Ribbe MW (2010) Vanadium nitrogenase reduces CO. Science 329:642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Yang ZY, Moure VR, Dean DR, Seefeldt LC (2012) Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase. Proc Natl Acad Sci USA 109:19644–19648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Yang ZY, Dean DR, Seefeldt LC (2011) Molybdenum nitrogenase catalyzes the reduction and coupling of CO to form hydrocarbons. J Biol Chem 286:19417–19421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Lancaster KM, Roemelt M, Ettenhuber P, Hu Y, Ribbe MW, Neese F, Bergmann U, DeBeer S (2011) X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science 334:974–977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Wiig JA, Hu Y, Lee CC, Ribbe MW (2012) Radical SAM-dependent carbon insertion into the nitrogenase M-cluster. Science 337:1672–1675

    Article  CAS  PubMed  Google Scholar 

  36. Wiig JA, Lee CC, Hu Y, Ribbe MW (2013) Tracing the interstitial carbide of the nitrogenase cofactor during substrate turnover. J Am Chem Soc 135:4982–4983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Moret ME, Peters JC (2011) N2 functionalization at iron metallaboratranes. J Am Chem Soc 133:18118–18121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Bortels H (1933) Kurze Notiz über die Katalyse der biologischen Stickstoffbindung. Zentralbl Bakt II Abt 87:476–477

    Google Scholar 

  39. Eady RR, Robson RL, Richardson TH, Miller RW, Hawkins M (1987) The vanadium nitrogenase of Azotobacter chroococcum. Purification and properties of the VFe protein. Biochem J 244:197–207

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Eady RR, Richardson TH, Miller RW, Hawkins M, Lowe DJ (1988) The vanadium nitrogenase of Azotobacter chroococcum. Purification and properties of the Fe protein. Biochem J 256:189–196

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Robson RL, Eady RR, Richardson TH, Miller RW, Hawkins M, Postgate JR (1986) The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature 322:388–390

    Article  CAS  Google Scholar 

  42. Hales BJ, Case EE, Morningstar JE, Dzeda MF, Mauterer LA (1986) Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii. Biochemistry 25:7251–7255

    Article  CAS  PubMed  Google Scholar 

  43. Hales BJ, Langosch DJ, Case EE (1986) Isolation and characterization of a second nitrogenase Fe-protein from Azotobacter vinelandii. J Biol Chem 261:15301–15306

    CAS  PubMed  Google Scholar 

  44. Blanchard CZ, Hales BJ (1996) Isolation of two forms of the nitrogenase VFe protein from Azotobacter vinelandii. Biochemistry 35:472–478

    Article  CAS  PubMed  Google Scholar 

  45. Lee CC, Hu Y, Ribbe MW (2009) Unique features of the nitrogenase VFe protein from Azotobacter vinelandii. Proc Natl Acad Sci USA 106:9209–9214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Blank MA, Lee CC, Hu Y, Hodgson KO, Hedman B, Ribbe MW (2011) Structural models of the [Fe4S4] clusters of homologous nitrogenase Fe proteins. Inorg Chem 50:7123–7128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Morningstar JE, Johnson MK, Case EE, Hales BJ (1987) Characterization of the metal clusters in the nitrogenase molybdenum-iron and vanadium-iron proteins of Azotobacter vinelandii using magnetic circular dichroism spectroscopy. Biochemistry 26:1795–1800

    Article  CAS  PubMed  Google Scholar 

  48. Tittsworth RC, Hales BJ (1996) Oxidative titration of the nitrogenase VFe protein from Azotobacter vinelandii: an example of redox-gated electron flow. Biochemistry 35:479–487

    Article  CAS  PubMed  Google Scholar 

  49. Hu Y, Corbett MC, Fay AW, Webber JA, Hedman B, Hodgson KO, Ribbe MW (2005) Nitrogenase reactivity with P-cluster variants. Proc Natl Acad Sci USA 27:13825–13830

    Article  Google Scholar 

  50. Chen J, Christiansen J, Tittsworth RC, Hales BJ, George GN, Coucouvanis D, Cramer SP (1993) Iron EXAFS of Azotobacter vinelandii nitrogenase MoFe and VFe proteins. J Am Chem Soc 115:5509–5515

    Article  CAS  Google Scholar 

  51. Harvey I, Arber JM, Eady RR, Smith BE, Garner CD, Hasnain SS (1990) Iron K-edge X-ray-absorption spectroscopy of the iron-vanadium cofactor of the vanadium nitrogenase from Azotobacter chroococcum. Biochem J 266:929–931

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Arber JM, Dobson BR, Eady RR, Stevens P, Hasnain SS, Garner CD, Smith BE (1987) Vanadium k-edge X-ray absorption spectrum of the VFe protein of the vanadium nitrogenase of Azotobacter chroococum. Nature 325:372–374

    Article  CAS  Google Scholar 

  53. George GN, Coyle CL, Hales BJ, Cramer SP (1988) X-ray absorption of Azotobacter vinelandii vanadium nitrogenase. J Am Chem Soc 110:4057–4059

    Article  CAS  Google Scholar 

  54. Fay AW, Blank MA, Lee CC, Hu Y, Hodgson KO, Hedman B, Ribbe MW (2010) Characterization of isolated nitrogenase FeVco. J Am Chem Soc 132:12612–12618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Carnahan EC, Protasiewicz JD, Lippard SJ (1993) 15 years of reductive coupling––what have we learned. Acc Chem Res 26:90–97

    Article  CAS  Google Scholar 

  56. Rofer-DePoorter CK (1981) A comprehensive mechanism for the Fischer–Tropsch synthesis. Chem Rev 81:447–474

    Article  CAS  Google Scholar 

  57. Siemann S, Schneider K, Dröttboom M, Müller A (2002) The Fe-only nitrogenase and the Mo nitrogenase from Rhodobacter capsulatus: a comparative study on the redox properties of the metal clusters present in the dinitrogenase components. Eur J Biochem 269:1650–1661

    Article  CAS  PubMed  Google Scholar 

  58. Krahn E, Weiss R, Kröckel M, Groppe J, Henkel G, Cramer P, Trautwein X, Schneider K, Müller A (2002) The Fe-only nitrogenase from Rhodobacter capsulatus: identification of the cofactor, an unusual, high-nuclearity iron-sulfur cluster, by Fe K-edge EXAFS and 57Fe Mössbauer spectroscopy. J Biol Inorg Chem 7:37–45

    Article  CAS  PubMed  Google Scholar 

  59. Dos Santos PC, Dean DR, Hu Y, Ribbe MW (2004) Formation and insertion of the nitrogenase iron-molybdenum cofactor. Chem Rev 104:1159–1173

    Article  PubMed  Google Scholar 

  60. Hu Y, Fay AW, Lee CC, Yoshizawa J, Ribbe MW (2008) Assembly of nitrogenase MoFe protein. Biochemistry 47:3973–3981

    Article  CAS  PubMed  Google Scholar 

  61. Goodwin PJ, Agar JN, Roll JT, Roberts GP, Johnson MK, Dean DR (1998) The Azotobacter vinelandii NifEN complex contains two identical [4Fe-4S] clusters. Biochemistry 37:10420–10428

    Article  CAS  PubMed  Google Scholar 

  62. Hu Y, Fay AW, Ribbe MW (2005) Identification of a nitrogenase FeMo cofactor precursor on NifEN complex. Proc Natl Acad Sci USA 102:3236–3241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Corbett MC, Hu Y, Fay AW, Ribbe MW, Hedman B, Hodgson KO (2006) Structural insights into a protein-bound iron-molybdenum cofactor precursor. Proc Natl Acad Sci USA 103:1238–1243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Lancaster KM, Hu Y, Bergmann U, Ribbe MW, DeBeer S (2013) X-ray spectroscopic observation of an interstitial carbide in NifEN-bound FeMoco precursor. J Am Chem Soc 135:610–612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Fay AW, Blank MA, Lee CC, Hu Y, Hodgson KO, Hedman B, Ribbe MW (2011) Spectroscopic characterization of the isolated iron-molybdenum cofactor (FeMoco) precursor from the protein NifEN. Angew Chem Int Ed Engl 50:7787–7790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Kaiser JT, Hu Y, Wiig JA, Rees DC, Ribbe MW (2011) Structure of precursor-bound NifEN: a nitrogenase FeMo cofactor maturase/insertase. Science 331:91–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Hu Y, Corbett MC, Fay AW, Webber JA, Hodgson KO, Hedman B, Ribbe MW (2006) FeMo cofactor maturation on NifEN. Proc Natl Acad Sci USA 103:17119–17124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Hu Y, Yoshizawa JM, Fay AW, Lee CC, Wiig JA, Ribbe MW (2009) Catalytic activities of NifEN: implications for nitrogenase evolution and mechanism. Proc Natl Acad Sci USA 106:16962–16966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Moser J, Lange C, Krausze J, Rebelein J, Schubert WD, Ribbe MW, Heinz DW, Jahn D (2013) Structure of ADP-aluminium fluoride-stabilized protochlorophyllide oxidoreductase complex. Proc Natl Acad Sci USA 110:2094–2098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Bröcker MJ, Schomburg S, Heinz DW, Jahn D, Schubert WD, Moser J (2010) Crystal structure of the nitrogenase-like dark operative protochlorophyllide oxidoreductase catalytic complex (ChlN/ChlB)2. J Biol Chem 285:27336–27345

    Article  PubMed Central  PubMed  Google Scholar 

  71. Muraki N, Nomata J, Ebata K, Mizoguchi T, Shiba T, Tamiaki H, Kurisu G, Fujita Y (2010) X-ray crystal structure of the light-independent protochlorophyllide reductase. Nature 465:110–114

    Article  CAS  PubMed  Google Scholar 

  72. Sarma R, Barney BM, Hamilton TL, Jones A, Seefeldt LC, Peters JW (2008) Crystal structure of the L protein of Rhodobacter sphaeroides light-independent protochlorophyllide reductase with MgADP bound: a homologue of the nitrogenase Fe protein. Biochemistry 47:13004–13015

    Article  CAS  PubMed  Google Scholar 

  73. Bröcker MJ, Virus S, Ganskow S, Heathcote P, Heinz DW, Schubert WD, Jahn D, Moser J (2008) ATP-driven reduction by dark-operative protochlorophyllide oxidoreductase from Chlorobium tepidum mechanistically resembles nitrogenase catalysis. J Biol Chem 283:10559–10567

    Article  PubMed  Google Scholar 

  74. Bröcker MJ, Wätzlich D, Uliczka F, Virus S, Saggu M, Lendzian F, Scheer H, Rüdiger W, Moser J, Jahn D (2008) Substrate recognition of nitrogenase-like dark operative protochlorophyllide oxidoreductase from Prochlorococcus marinus. J Biol Chem 283:29873–29881

    Article  PubMed Central  PubMed  Google Scholar 

  75. Wätzlich D, Bröcker MJ, Uliczka F, Ribbe M, Virus S, Jahn D, Moser J (2009) Chimeric nitrogenase-like enzymes of (bacterio)chlorophyll biosynthesis. J Biol Chem 284:15530–15540

    Article  PubMed Central  PubMed  Google Scholar 

  76. Bröcker MJ, Wätzlich D, Saggu M, Lendzian F, Moser J, Jahn D (2010) Biosynthesis of (bacterio)chlorophylls: ATP-dependent transient subunit interaction and electron transfer of dark operative protochlorophyllide oxidoreductase. J Biol Chem 285:8268–8277

    Article  PubMed Central  PubMed  Google Scholar 

  77. Fujita Y, Bauer CE (2000) Reconstitution of light-independent protochlorophyllide reductase from purified bchl and BchN-BchB subunits. In vitro confirmation of nitrogenase-like features of a bacteriochlorophyll biosynthesis enzyme. J Biol Chem 275:23583–23588

    Article  CAS  PubMed  Google Scholar 

  78. Nomata J, Kitashima M, Inoue K, Fujita Y (2006) Nitrogenase Fe protein-like Fe-S cluster is conserved in L-protein (BchL) of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus. FEBS Lett 580:6151–6154

    Article  CAS  PubMed  Google Scholar 

  79. Nomata J, Mizoguchi T, Tamiaki H, Fujita Y (2006) A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis: reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from Rhodobacter capsulatus. J Biol Chem 281:15021–15028

    Article  CAS  PubMed  Google Scholar 

  80. Burke DH, Hearst JE, Sidow A (1993) Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc Natl Acad Sci USA 90:7134–7138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554

    Article  CAS  PubMed  Google Scholar 

  82. Boyd ES, Peters JW (2013) New insights into the evolutionary history of biological nitrogen fixation. Front Microbiol 4:201

    PubMed Central  PubMed  Google Scholar 

  83. Staples CR, Lahiri S, Raymond J, Von Herbulis L, Mukhophadhyay B, Blankenship RE (2007) Expression and association of group IV nitrogenase NifD and NifH homologs in the non-nitrogen-fixing archaeon Methanocaldococcus jannaschii. J Bacteriol 189:7392–7398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grant GM 67626 (M.W.R.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yilin Hu or Markus W. Ribbe.

Additional information

Responsible Editors: José Moura and Paul Bernhardt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Ribbe, M.W. Nitrogenase and homologs. J Biol Inorg Chem 20, 435–445 (2015). https://doi.org/10.1007/s00775-014-1225-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1225-3

Keywords

Navigation