Skip to main content

Recombinant CHO Cell Pool Generation Using piggyBac Transposon System

  • Protocol
  • First Online:
Recombinant Protein Expression in Mammalian Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1850))

Abstract

CHO cell pools with desirable characteristics of high titer and consistent product quality are useful for rapid production of recombinant proteins. Here we describe the generation of CHO cell pools using the piggyBac transposon system for mediating gene integration. The method describes the co-transfection of cells with the donor plasmid (coding for the gene of interest) and the helper plasmid (coding for the transposase) using polyethyleneimine (PEI). This is followed by a genetic selection for the generation of a cell pool. The resulting cell pool can be used to start a batch or fed-batch culture. Alternatively it can be used for generation of clonal cell lines or generation of cell banks for future use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  CAS  Google Scholar 

  2. Walsh G (2014) Biopharmaceutical benchmarks. Nat Biotechnol 32:992–1000

    Article  CAS  Google Scholar 

  3. Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R (2016) Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 36:1110–1122

    Article  CAS  Google Scholar 

  4. Ye J, Alvin K, Latif H, Hsu A, Parikh V, Whitmer T, Tellers M, de la Cruz Edmonds MC, Ly J, Salmon P, Markusen JF (2010) Rapid protein production using CHO stable transfection pools. Biotechnol Prog 26:1431–1437

    Article  CAS  Google Scholar 

  5. Balasubramanian S, Matasci M, Kadlecova Z, Baldi L, Hacker DL, Wurm FM (2015) Rapid recombinant protein production from piggyBac transposon-mediated stable CHO cell pools. J Biotechnol 200:61–69

    Article  CAS  Google Scholar 

  6. Fan L, Rizzi G, Bierilo K, Tian J, Yee JC, Russell R, Das TK (2017) Comparative study of therapeutic antibody candidates derived from mini-pool and clonal cell lines. Biotechnol Prog. 33:1456–1462. https://doi.org/10.1002/btpr.2477

  7. Hu Z, Hsu W, Pynn A, Ng D, Quicho D, Adem Y, Kwong Z, Mauger B, Joly J, Snedecor B, Laird MW, Andersen DC, Shen A (2017) A strategy to accelerate protein production from a pool of clones in Chinese hamster ovary cells for toxicology studies. Biotechnol Prog. 33:1449–1455. https://doi.org/10.1002/btpr.2467

  8. Munro TP, Le K, Le H, Zhang L, Stevens J, Soice N, Benchaar SA, Hong RW, Goudar CT (2017) Accelerating patient access to novel biologics using stable pool-derived product for non-clinical studies and single clone-derived product for clinical studies. Biotechnol Prog. 33:1476–1482. https://doi.org/10.1002/btpr.2572

  9. Rajendra Y, Balasubramanian S, McCracken NA, Norris DL, Lian Z, Schmitt MG, Frye CC, Barnard GC (2017) Evaluation of piggyBac-mediated CHO pools to enable material generation to support GLP toxicology studies. Biotechnol Prog. 33:1436–1448. https://doi.org/10.1002/btpr.2495

  10. Scarcelli JJ, Shang TQ, Iskra T, Allen MJ, Zhang L (2017) Strategic deployment of CHO expression platforms to deliver Pfizer's monoclonal antibody portfolio. Biotechnol Prog. 33:1463–1467. https://doi.org/10.1002/btpr.2493

  11. Matasci M, Baldi L, Hacker DL, Wurm FM (2011) The PiggyBac transposon enhances the frequency of CHO stable cell line generation and yields recombinant lines with superior productivity and stability. Biotechnol Bioeng 108:2141–2150

    Article  CAS  Google Scholar 

  12. Balasubramanian S, Rajendra Y, Baldi L, Hacker DL, Wurm FM (2016) Comparison of three transposons for the generation of highly productive recombinant CHO cell pools and cell lines. Biotechnol Bioeng 113:1234–1243

    Article  CAS  Google Scholar 

  13. Rajendra Y, Balasubramanian S, Peery RB, Swartling JR, McCracken NA, Norris DL, Frye CC, Barnard GC (2017) Bioreactor scale up and protein product quality characterization of piggyBac transposon derived CHO pools. Biotechnol Prog 33:534–540

    Article  CAS  Google Scholar 

  14. Huang X, Guo H, Tammana S, Jung Y-C, Mellgren E, Bassi P, Cao Q, Tu ZJ, Kim YC, Ekker SC, Wu X, Wang SM, Zhou X (2010) Gene transfer efficiency and genome-wide integration profiling of sleeping beauty, Tol2, and piggyBac transposons in human primary T cells. Mol Ther 18:1803–1813

    Article  CAS  Google Scholar 

  15. Wu SC-Y, Meir Y-JJ, Coates CJ, Handler AM, Pelczar P, Moisyadi S, Kaminski JM (2006) piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci U S A 103:15008–15013

    Article  CAS  Google Scholar 

  16. Rajendra Y, Peery RB, Barnard GC (2016) Generation of stable Chinese hamster ovary pools yielding antibody titers of up to 7.6 g/L using the piggyBac transposon system. Biotechnol Prog 32:1301–1307

    Article  CAS  Google Scholar 

  17. Alattia J-R, Matasci M, Dimitrov M, Aeschbach L, Balasubramanian S, Hacker DL, Wurm FM, Fraering PC (2013) Highly efficient production of the Alzheimer's γ-secretase integral membrane protease complex by a multi-gene stable integration approach. Biotechnol Bioeng 110:1995–2005

    Article  CAS  Google Scholar 

  18. Balasubramanian S, Wurm FM, Hacker DL (2016) Multigene expression in stable CHO cell pools generated with the piggyBac transposon system. Biotechnol Prog 32:1308–1317

    Article  CAS  Google Scholar 

  19. Hacker DL, Balasubramanian S (2016) Recombinant protein production from stable mammalian cell lines and pools. Curr Opin Struct Biol 38:129–136

    Article  CAS  Google Scholar 

  20. Rajendra Y, Peery RB, Hougland MD, Barnard GC, Wu X, Fitchett JR, Bacica M, Demarest SJ (2017) Transient and stable CHO expression, purification and characterization of novel hetero-dimeric bispecific IgG antibodies. Biotechnol Prog 33:469–477

    Article  CAS  Google Scholar 

  21. Bire S, Ley D, Casteret S, Mermod N, Bigot Y, Rouleux-Bonnin F (2013) Optimization of the piggyBac transposon using mRNA and insulators: toward a more reliable gene delivery system. PLoS One 8:e82559

    Article  Google Scholar 

  22. Oguchi S, Saito H, Tsukahara M, Tsumura H (2006) pH condition in temperature shift cultivation enhances cell longevity and specific hMab productivity in CHO culture. Cytotechnology 52:199–207

    Article  CAS  Google Scholar 

  23. Li F, Vijayasankaran N, Shen A, Kiss R, Amanullah A (2010) Cell culture processes for monoclonal antibody production. MAbs 2:466–477

    Article  Google Scholar 

  24. Balasubramanian S (2015) Study of transposon-mediated cell pool and cell line generation in CHO cells. Thesis No. 6563, Ecole Polytechnique Federale de Lausanne (EPFL)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Balasubramanian, S. (2018). Recombinant CHO Cell Pool Generation Using piggyBac Transposon System. In: Hacker, D. (eds) Recombinant Protein Expression in Mammalian Cells. Methods in Molecular Biology, vol 1850. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8730-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8730-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8729-0

  • Online ISBN: 978-1-4939-8730-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics