Skip to main content

Systemic Injection of Peptide-PMOs into Humanized DMD Mice and Evaluation by RT-PCR and ELISA

  • Protocol
  • First Online:
Exon Skipping and Inclusion Therapies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1828))

Abstract

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder due to the lack of dystrophin production. The disease is characterized by muscle wasting, with the most common causes of death being respiratory failure or heart failure. Recently, exon skipping using a phosphorodiamidate morpholino oligomer (PMO) isĀ used as an FDA approved treatment for DMD. Peptide-conjugated PMOs (PPMOs) are used to increase exon skipping efficacy in the heart and are a promising therapy for DMD. Researchers have previously relied on high-performance liquid chromatography (HPLC) or liquid chromatography-mass spectrometry (LC/MS) methods for detecting PPMO uptake, but an enzyme-linked immunosorbent assay (ELISA) has been shown to have greater sensitivity. Here, we present methodologies to determine the uptake efficiency of a PPMO into the heart and efficacy of exon 51 skipping by a PPMO injected retro-orbitally into a humanized DMD mouse model via ELISA and RT-PCR, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McNally EM, Pytel P (2007) Muscle diseases: the muscular dystrophies. Annu Rev Pathol 2:87ā€“109. https://doi.org/10.1146/annurev.pathol.2.010506.091936

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Flanigan KM (2014) Duchenne and Becker muscular dystrophies. Neurol Clin 32:671ā€“688. https://doi.org/10.1016/j.ncl.2014.05.002

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  3. Lee JJA, Yokota T (2016) Translational research in muscular dystrophy. Springer, New York, NY 87ā€“102. doi: https://doi.org/10.1007/978-4-431-55678-7

    Google ScholarĀ 

  4. Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11:125ā€“140. https://doi.org/10.1038/nrd3625

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Aoki Y, Nakamura A, Yokota T et al (2010) In-frame dystrophin following exon 51-skipping improves muscle pathology and function in the exon 52-deficient mdx mouse. Mol Ther 18:1995ā€“2005. https://doi.org/10.1038/mt.2010.186

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Yokota T, Lu QL, Partridge T et al (2009) Efficacy of systemic morpholino exon-skipping in duchenne dystrophy dogs. Ann Neurol 65:667ā€“676. https://doi.org/10.1002/ana.21627

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Lu QL, Rabinowitz A, Chen YC et al (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A 102:198ā€“203. https://doi.org/10.1073/pnas.0406700102

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Wein N, Vulin A, Findlay A et al (2017) Efficient skipping of single exon duplications in DMD patient-derived cell lines using an antisense oligonucleotide approach. J Neuromuscul Dis 4:199ā€“207

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  9. Lim KRQ, Maruyama R, Yokota T (2017) Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther 11:533ā€“545. https://doi.org/10.2147/DDDT.S97635

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Nguyen Q, Yokota T (2017) Immortalized muscle cell model to test the exon skipping efficacy for duchenne muscular dystrophy. J Pers Med 7:4. https://doi.org/10.3390/jpm7040013

    ArticleĀ  Google ScholarĀ 

  11. Bladen CL, Salgado D, Monges S et al (2015) The TREAT-NMD DMD global database: analysis of more than 7,000 duchenne muscular dystrophy mutations. Hum Mutat 36:395ā€“402. https://doi.org/10.1002/humu.22758

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Shimizu-motohashi Y, Miyatake S, Komaki H et al (2016) Recent advances in innovative therapeutic approaches for Duchenne muscular dystrophy: from discovery to clinical trials. Am J Transl Res 8:2471ā€“2489

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Wu B, Moulton HM, Iversen PL et al (2008) Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc Natl Acad Sci 105:14814ā€“14819. https://doi.org/10.1073/pnas.0805676105

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Kudoh H, Ikeda H, Kakitani M et al (2005) A new model mouse for Duchenne muscular dystrophy produced by 2.4 Mb deletion of dystrophin gene using Cre-loxP recombination system. Biochem Biophys Res Commun 328:507ā€“516. https://doi.org/10.1016/j.bbrc.2004.12.191

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Echigoya Y, Lim KRQ, Trieu N et al (2017) Quantitative antisense screening and optimization for exon 51 skipping in duchenne muscular dystrophy. Mol Ther 25:2561ā€“2572. https://doi.org/10.1016/j.ymthe.2017.07.014

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Burki U, Keane J, Blain A et al (2015) Development and application of an ultrasensitive hybridization-based ELISA method for the determination of peptide-conjugated phosphorodiamidate morpholino oligonucleotides. Nucleic Acid Ther 25:275ā€“284. https://doi.org/10.1089/nat.2014.0528

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Rio DC (2014) Reverse transcription-polymerase chain reaction. Cold Spring Harb Protoc 2014:1207ā€“1216. https://doi.org/10.1101/pdb.prot080887

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  18. Echigoya Y, Nakamura A, Nagata T et al (2017) Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc Natl Acad Sci 114:4213ā€“4218. https://doi.org/10.1073/pnas.1613203114

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Acknowledgments

This work is supported by the Muscular Dystrophy Canada, the Friends of Garrett Cumming Research Fund, the HM Toupin Neurological Science Research Fund, the Canadian Institutes of Health Research (CIHR), the Alberta Innovates: Health Solutions (AIHS), the Canada Foundation for Innovation (CFI), the Alberta Advanced Education and Technology, and the Women and Childrenā€™s Health Research Institute (WCHRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Yokota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Melo, D., Maruyama, R., Yokota, T. (2018). Systemic Injection of Peptide-PMOs into Humanized DMD Mice and Evaluation by RT-PCR and ELISA. In: Yokota, T., Maruyama, R. (eds) Exon Skipping and Inclusion Therapies. Methods in Molecular Biology, vol 1828. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8651-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8651-4_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8650-7

  • Online ISBN: 978-1-4939-8651-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics