Skip to main content

MicroRNA Expression and Regulation During Maize Somatic Embryogenesis

  • Protocol
  • First Online:
Plant Cell Culture Protocols

Abstract

MicroRNAs are tiny molecules that strikingly change their expression patterns and distribution during somatic embryogenesis induction and plant regeneration. It is of great relevance to analyze simultaneously the microRNA and target mRNA fates to understand their role in promoting an adequate embryogenic response to external stimulus in the regenerating tissues. Here we describe a method to evaluate the expression patterns of miRNAs or other sRNAs and their target regulation in distinctive tissues observed during maize plant regeneration. Key features of the method include the classification of regenerating plant material with reproducibly distinctive morphological characteristics and a purification procedure that renders high-quality small and large RNA separation from the same sample for qRT-PCR analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nodine MD, Bartel DP (2010) MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev 24:2678–2692. https://doi.org/10.1101/gad.1986710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Chávez-Hernández C, Alejandri-Ramírez NA, Juárez-González VT, Dinkova TD (2015) Maize miRNA and target regulation in response to hormone depletion and light exposure during somatic embryogenesis. Front Plant Sci 6:555. https://doi.org/10.3389/fpls.2015.00555

    Article  PubMed  PubMed Central  Google Scholar 

  3. Szyrajew K, Bielewicz D, Dolata J et al (2017) MicroRNAs are intensively regulated during induction of somatic embryogenesis in Arabidopsis. Front Plant Sci 8:18. https://doi.org/10.3389/fpls.2017.00018

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant MicroRNAs. Plant Cell 25:2383–2399. https://doi.org/10.1105/tpc.113.113159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Garrocho-Villegas V, de Jesús-Olivera MT, Quintanar ES (2012) Maize somatic embryogenesis: recent features to improve plant regeneration. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant cell culture protocols, methods in molecular biology, vol 877. Springer, Heidelberg, pp 173–182. https://doi.org/10.1007/978-1-61779-818-4_14

    Chapter  Google Scholar 

  6. Hisanaga T, Miyashima S, Nakajim K (2014) Small RNAs as positional signal for pattern formation. Curr Opin Plant Biol 21:37–42. https://doi.org/10.1016/j.pbi.2014.06.005

    Article  PubMed  CAS  Google Scholar 

  7. Pyott D, Molnar A (2015) Going mobile: non-cell-autonomous small RNAs shape the genetic landscape of plants. Plant Biotechnol J 13:306–318. https://doi.org/10.1111/pbi.12353

    Article  PubMed  CAS  Google Scholar 

  8. Shen Y, Jiang Z, Lu S, Lin H et al (2013) Combined small RNA and degradome sequencing reveals microRNA regulation during immature maize embryo dedifferentiation. Biochem Biophys Res Commun 441:425–430. https://doi.org/10.1016/j.bbrc.2013.10.113

    Article  PubMed  CAS  Google Scholar 

  9. Chu C-C, Wang C-C, Sun C-S, Hsu C, Yin K-C, Chu C-Y, Bi F-Y (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. J Sci China Math 18:659–668

    Google Scholar 

  10. Loza-Rubio E, Rojas E, Gómez L et al (2008) Development of an edible rabies vaccine in maize using Vnukovo strain. In: Dodet B, Fooks AR, Müller T, Tordo N, Scientific and Technical Department of the OIE (eds) Towards the elimination of rabies in Eurasia. Developments in Biologicals, vol 131. Karger, Basel, pp 477–482

    Google Scholar 

  11. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  12. INIFAP (2010) Reporte Anual 2009 Ciencia y Tecnología para el Campo Mexicano, 1st edn. México DF

    Google Scholar 

  13. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179. https://doi.org/10.1093/nar/gni178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Varkonyi-Gasic E, Wu R, Wood M et al (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Meth 3:12. https://doi.org/10.1186/1746-4811-3-12

    Article  CAS  Google Scholar 

  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  16. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74. https://doi.org/10.1093/nar/gkm306

    Article  PubMed  PubMed Central  Google Scholar 

  17. Turner T, Adhikari S, Subramanian S (2013) Optimizing stem-loop qPCR assays through multiplexed cDNA synthesis of U6 and miRNAs. Plant Signal Behav 8(8):e24918. https://doi.org/10.4161/psb.24918

    Article  PubMed  CAS  Google Scholar 

  18. Romero-Pérez PS (2015) Análisis de microRNAs específicos de leguminosas de respuesta a déficit hídrico en Medicago truncatula. Master Thesis Dissertation, Universidad Nacional Autónoma de México

    Google Scholar 

Download references

Acknowledgment

Research performed in Dr. Dinkova’s lab is supported by grants from Consejo Nacional de Ciencia y Tecnología, 238439, Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica, IN211215, IN214118, and PAIP 5000-9118. The authors appreciate the technical assistance provided by Maria Teresa de Jesús Olivera Flores during in vitro plant tissue culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzvetanka D. Dinkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

López-Ruiz, B.A., Juárez-González, V.T., Chávez-Hernández, E.C., Dinkova, T.D. (2018). MicroRNA Expression and Regulation During Maize Somatic Embryogenesis. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology, vol 1815. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8594-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8594-4_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8593-7

  • Online ISBN: 978-1-4939-8594-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics