Skip to main content

Anti-ganglioside Antibodies in Peripheral Nerve Pathology

  • Protocol
  • First Online:
Gangliosides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1804))

Abstract

Anti-ganglioside antibodies are principally associated with autoimmune peripheral neuropathies. In these disorders, immune attack is inadvertently directed at peripheral nerve by autoantibodies that target glycan structures borne by glycolipids, particularly gangliosides concentrated in nerve myelin and axons. The most thoroughly studied disorder is the acute paralytic disease, Guillain–Barré syndrome (GBS) in which IgG autoantibodies against gangliosides arise following acute infections, notably Campylobacter jejuni enteritis. Additionally, chronic autoimmune neuropathies are associated with IgM antibodies directed against many glycolipids including gangliosides. This introductory chapter briefly summarizes the immunological and pathological features of these disorders, focusing on the methodological development of antibody measurement and of animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willison HJ, Yuki N (2002) Peripheral neuropathies and anti-glycolipid antibodies. Brain J Neurol 125(Pt 12):2591–2625

    Article  Google Scholar 

  2. Kieseier BC, Hartung HP, Wiendl H (2006) Immune circuitry in the peripheral nervous system. Curr Opin Neurol 19(5):437–445. https://doi.org/10.1097/01.wco.0000245365.51823.72. 00019052-200610000-00003 [pii]

    Article  PubMed  CAS  Google Scholar 

  3. Meyer Zu HG, Hu W, Hartung HP, Lehmann HC, Kieseier BC (2008) The immunocompetence of Schwann cells. Muscle Nerve 37(1):3–13. https://doi.org/10.1002/mus.20893

    Article  CAS  Google Scholar 

  4. Kanda T (2013) Biology of the blood-nerve barrier and its alteration in immune mediated neuropathies. J Neurol Neurosurg Psychiatry, 84 (2):208–212. https://doi.org/10.1136/jnnp-2012-302312. [pii]

    Article  Google Scholar 

  5. Quarles RH, Weiss MD (1999) Autoantibodies associated with peripheral neuropathy. Muscle Nerve 22(7):800–822. https://doi.org/10.1002/(SICI)1097-4598(199907)22:7<800::AID-MUS2>3.0.CO;2-F

    Article  PubMed  CAS  Google Scholar 

  6. Ogawa-Goto K, Abe T (1998) Gangliosides and glycosphingolipids of peripheral nervous system myelins-a minireview. Neurochem Res 23(3):305–310

    Article  CAS  PubMed  Google Scholar 

  7. Salzer JL, Brophy PJ, Peles E (2008) Molecular domains of myelinated axons in the peripheral nervous system. Glia 56(14):1532–1540. https://doi.org/10.1002/glia.20750

    Article  PubMed  Google Scholar 

  8. Saida T, Saida K, Dorfman SH, Silberberg DH, Sumner AJ, Manning MC, Lisak RP, Brown MJ (1979) Experimental allergic neuritis induced by sensitization with galactocerebroside. Science 204(4397):1103–1106

    Article  CAS  PubMed  Google Scholar 

  9. Honke K (2013) Biosynthesis and biological function of sulfoglycolipids. Proc Jpn Acad Ser B Phys Biol Sci 89(4):129–138. DN/JST.JSTAGE/pjab/89.129 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Popko B, Dupree JL, Coetzee T, Suzuki K, Suzuki K (1999) Genetic analysis of myelin galactolipid function. Adv Exp Med Biol 468:237–244

    Article  CAS  PubMed  Google Scholar 

  11. Svennerholm L, Bostrom K, Fredman P, Jungbjer B, Lekman A, Mansson JE, Rynmark BM (1994) Gangliosides and allied glycosphingolipids in human peripheral nerve and spinal cord. Biochim Biophys Acta 1214(2):115–123. 0005-2760(94)90034-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  12. Gu Y, Chen ZW, Siegel A, Koshy R, Ramirez C, Raabe TD, Devries GH, Ilyas AA (2012) Analysis of humoral immune responses to LM1 ganglioside in guinea pigs. J Neuroimmunol 246(1–2):58–64. https://doi.org/10.1016/j.jneuroim.2012.03.001. S0165-5728(12)00065-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  13. Ariga T, Kohriyama T, Freddo L, Latov N, Saito M, Kon K, Ando S, Suzuki M, Hemling ME, Rinehart KL Jr (1987) Characterization of sulfated glucuronic acid containing glycolipids reacting with IgM M-proteins in patients with neuropathy. J Biol Chem 262(2):848–853

    PubMed  CAS  Google Scholar 

  14. Chou DK, Ilyas AA, Evans JE, Costello C, Quarles RH, Jungalwala FB (1986) Structure of sulfated glucuronyl glycolipids in the nervous system reacting with HNK-1 antibody and some IgM paraproteins in neuropathy. J Biol Chem 261(25):11717–11725

    PubMed  CAS  Google Scholar 

  15. Ilyas AA, Dalakas MC, Brady RO, Quarles RH (1986) Sulfated glucuronyl glycolipids reacting with anti-myelin-associated glycoprotein monoclonal antibodies including IgM paraproteins in neuropathy: species distribution and partial characterization of epitopes. Brain Res 385(1):1–9. 0006-8993(86)91540-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Ledeen RW, Yu RK (1982) Gangliosides: structure, isolation, and analysis. Methods Enzymol 83:139–191

    Article  CAS  PubMed  Google Scholar 

  17. Kusunoki S (2003) Anti-ganglioside antibodies in Guillain-Barre syndrome; useful diagnostic markers as well as possible pathogenetic factors. Intern Med 42(6):457–458

    Article  PubMed  Google Scholar 

  18. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572

    Article  CAS  Google Scholar 

  19. Cunningham ME, McGonigal R, Meehan GR, Barrie JA, Yao D, Halstead SK, Willison HJ (2016) Anti-ganglioside antibodies are removed from circulation in mice by neuronal endocytosis. Brain 139(Pt 6):1657–1665. https://doi.org/10.1093/brain/aww056

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fewou SN, Plomp JJ, Willison HJ (2014) The pre-synaptic motor nerve terminal as a site for antibody-mediated neurotoxicity in autoimmune neuropathies and synaptopathies. J Anat 224(1):36–44. https://doi.org/10.1111/joa.12088

    Article  PubMed  CAS  Google Scholar 

  21. Fewou SN, Rupp A, Nickolay LE, Carrick K, Greenshields KN, Pediani J, Plomp JJ, Willison HJ (2012) Anti-ganglioside antibody internalization attenuates motor nerve terminal injury in a mouse model of acute motor axonal neuropathy. J Clin Invest 122(3):1037–1051. https://doi.org/10.1172/JCI59110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ohmi Y, Ohkawa Y, Tajima O, Sugiura Y, Furukawa K, Furukawa K (2014) Ganglioside deficiency causes inflammation and neurodegeneration via the activation of complement system in the spinal cord. J Neuroinflammation 11:61. https://doi.org/10.1186/1742-2094-11-61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Morgan BP (2015) The role of complement in neurological and neuropsychiatric diseases. Expert Rev Clin Immunol 11(10):1109–1119. https://doi.org/10.1586/1744666x.2015.1074039

    Article  PubMed  CAS  Google Scholar 

  24. Burger D, Simon M, Peruisseau G, Steck AJ (1990) The epitope(s) recognised by HNK-1 antibody and IgM paraprotein in neuropathy is present on several N-linked oligosaccharide structures on human P0 and myelin-associated glycoprotein. J Neurochem 54:1569–1575

    Article  CAS  PubMed  Google Scholar 

  25. Lopate G, Kornberg AJ, Yue J, Choksi R, Pestronk A (2001) Anti-myelin associated glycoprotein antibodies: variability in patterns of IgM binding to peripheral nerve. J Neurol Sci 188:67–72

    Article  CAS  PubMed  Google Scholar 

  26. Lopate G, Parks BJ, Goldstein JM, Yee WC, Friesenhahn GM, Pestronk A (1997) Polyneuropathies associated with high titre antisulphatide antibodies: characteristics of patients with and without serum monoclonal proteins. J Neurol Neurosurg Psychiatry 62:581–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nobile-Orazio E, Manfredini E, Carpo M, Meucci N, Monaco S, Ferrari S, Bonetti B, Cavaletti G, Gemignani F, Durelli L, Barbieri S, Allaria S, Sgarzi M, Scarlato G (1994) Frequency and clinical correlates of anti-neural IgM antibodies in neuropathy associated with IgM monoclonal gammopathy. Ann Neurol 36:416–424

    Article  CAS  PubMed  Google Scholar 

  28. Willison HJ, O'Leary CP, Veitch J, Blumhardt LD, Busby M, Donaghy M, Fuhr P, Ford H, Hahn A, Renaud S, Katifi HA, Ponsford S, Reuber M, Steck A, Sutton I, Schady W, Thomas PK, Thompson AJ, Vallat JM, Winer J (2001) The clinical and laboratory features of chronic sensory ataxic neuropathy with anti-disialosyl IgM antibodies. Brain J Neurol 124(Pt 10):1968–1977

    Article  CAS  Google Scholar 

  29. Kornberg AJ, Pestronk A (1995) Chronic motor neuropathies: diagnosis, therapy, and pathogenesis. Ann Neurol 37(Suppl 1):S43–S50

    Article  PubMed  Google Scholar 

  30. Paterson G, Wilson G, Kennedy PGE, Willison HJ (1995) Analysis of anti-GM1 ganglioside IgM antibodies cloned from motor neuropathy patients demonstrates diverse v-region gene usage with extensive somatic mutation. J Immunol 155:3049–3059

    PubMed  CAS  Google Scholar 

  31. Townson K, Boffey J, Nicholl D, Veitch J, Bundle D, Zhang P, Samain E, Antoine T, Bernardi A, Arosio D, Sonnino S, Isaacs N, Willison HJ (2007) Solid phase immunoadsorption for therapeutic and analytical studies on neuropathy-associated anti-GM1 antibodies. Glycobiology 17(3):294–303

    Article  CAS  PubMed  Google Scholar 

  32. Willison HJ, Paterson G, Kennedy PG, Veitch J (1994) Cloning of human anti-GM1 antibodies from motor neuropathy patients. Ann Neurol 35(4):471–478

    Article  CAS  PubMed  Google Scholar 

  33. Goodfellow JA, Willison HJ (2016) Guillain-Barre syndrome: a century of progress. Nat Rev Neurol 12(12):723–731. https://doi.org/10.1038/nrneurol.2016.172

    Article  PubMed  CAS  Google Scholar 

  34. Willison HJ, Jacobs BC, van Doorn PA (2016) Guillain-Barre syndrome. Lancet 388(10045):717–727. https://doi.org/10.1016/s0140-6736(16)00339-1

    Article  PubMed  Google Scholar 

  35. Hafer-Macko CE, Sheikh KA, Li CY, Ho TW, Cornblath DR, McKhann GM, Asbury AK, Griffin JW (1996) Immune attack on the Schwann cell surface in acute inflammatory demyelinating polyneuropathy. Ann Neurol 39(5):625–635. https://doi.org/10.1002/ana.410390512

    Article  PubMed  CAS  Google Scholar 

  36. Kusunoki S, Kaida K (2011) Antibodies against ganglioside complexes in Guillain-Barre syndrome and related disorders. J Neurochem 116(5):828–832. https://doi.org/10.1111/j.1471-4159.2010.07029.x

    Article  PubMed  CAS  Google Scholar 

  37. Hafer-Macko C, Hsieh ST, Li CY, Ho TW, Sheikh K, Cornblath DR, McKhann GM, Asbury AK, Griffin JW (1996) Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann Neurol 40(4):635–644. https://doi.org/10.1002/ana.410400414

    Article  PubMed  CAS  Google Scholar 

  38. Ho TW, Hsieh ST, Nachamkin I, Willison HJ, Sheikh K, Kiehlbauch J, Flanigan K, McArthur JC, Cornblath DR, McKhann GM, Griffin JW (1997) Motor nerve terminal degeneration provides a potential mechanism for rapid recovery in acute motor axonal neuropathy after Campylobacter infection. Neurology 48(3):717–724

    Article  CAS  PubMed  Google Scholar 

  39. Halstead SK, Kalna G, Islam MB, Jahan I, Mohammad QD, Jacobs BC, Endtz HP, Islam Z, Willison HJ (2016) Microarray screening of Guillain-Barre syndrome sera for antibodies to glycolipid complexes. Neurol Neuroimmunol Neuroinflamm 3(6):e284. https://doi.org/10.1212/nxi.0000000000000284

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ho TW, Willison HJ, Nachamkin I, Li CY, Veitch J, Ung H, Wang GR, Liu RC, Cornblath DR, Asbury AK, Griffin JW, McKhann GM (1999) Anti-GD1a antibody is associated with axonal but not demyelinating forms of Guillain-Barre syndrome. Ann Neurol 45(2):168–173

    Article  CAS  PubMed  Google Scholar 

  41. Kaida K, Kusunoki S, Kamakura K, Motoyoshi K, Kanazawa I (2003) GalNAc-GD1a in human peripheral nerve: target sites of anti-ganglioside antibody. Neurology 61(4):465–470

    Article  CAS  PubMed  Google Scholar 

  42. Yuki N (2001) Infectious origins of, and molecular mimicry in, Guillain-Barre and Fisher syndromes. Lancet Infect Dis 1(1):29–37

    Article  CAS  PubMed  Google Scholar 

  43. Fisher M (1956) An unusual variant of acute idiopathic polyneuritis (syndrome of ophthalmoplegia, ataxia and areflexia). N Engl J Med 255(2):57–65

    Article  CAS  PubMed  Google Scholar 

  44. Chiba A, Kusunoki S, Obata H, Machinami R, Kanazawa I (1993) Serum anti-GQ1b IgG antibody is associated with ophthalmoplegia in Miller Fisher syndrome and Guillain-Barre syndrome: clinical and immunohistochemical studies. Neurology 43(10):1911–1917

    Article  CAS  PubMed  Google Scholar 

  45. Chiba A, Kusunoki S, Shimizu T, Kanazawa I (1992) Serum IgG antibody to ganglioside GQ1b is a possible marker of Miller Fisher syndrome. Ann Neurol 31(6):677–679. https://doi.org/10.1002/ana.410310619

    Article  PubMed  CAS  Google Scholar 

  46. Willison HJ, Veitch J, Paterson G, Kennedy PG (1993) Miller Fisher syndrome is associated with serum antibodies to GQ1b ganglioside. J Neurol Neurosurg Psychiatry 56(2):204–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Defrance T, Taillardet M, Genestier L (2011) T cell-independent B cell memory. Curr Opin Immunol 23(3):330–336. https://doi.org/10.1016/j.coi.2011.03.004. S0952-7915(11)00026-4 [pii]

    Article  PubMed  CAS  Google Scholar 

  48. Desmazieres A, Zonta B, Zhang A, Wu LM, Sherman DL, Brophy PJ (2014) Differential stability of PNS and CNS nodal complexes when neuronal neurofascin is lost. J Neurosci 34(15):5083–5088. https://doi.org/10.1523/jneurosci.4662-13.2014

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mori L, De LG (2012) T cells specific for lipid antigens. Immunol Res 53(1–3):191–199. https://doi.org/10.1007/s12026-012-8294-6

    Article  PubMed  CAS  Google Scholar 

  50. Galili U (2016) Natural anti-carbohydrate antibodies contributing to evolutionary survival of primates in viral epidemics? Glycobiology 26(11):1140–1150. https://doi.org/10.1093/glycob/cww088

    Article  PubMed  CAS  Google Scholar 

  51. Schneider C, Smith DF, Cummings RD, Boligan KF, Hamilton RG, Bochner BS, Miescher S, Simon HU, Pashov A, Vassilev T, von Gunten S (2015) The human IgG anti-carbohydrate repertoire exhibits a universal architecture and contains specificity for microbial attachment sites. Sci Transl Med 7(269):269ra261. https://doi.org/10.1126/scitranslmed.3010524

    Article  CAS  Google Scholar 

  52. Zimmermann S, Lepenies B (2015) Glycans as vaccine antigens and adjuvants: immunological considerations. Methods Mol Biol (Clifton, NJ) 1331:11–26. https://doi.org/10.1007/978-1-4939-2874-3_2

    Article  Google Scholar 

  53. Willison HJ, Goodyear CS (2013) Glycolipid antigens and autoantibodies in autoimmune neuropathies. Trends Immunol 34(9):453–459. https://doi.org/10.1016/j.it.2013.05.001

    Article  PubMed  CAS  Google Scholar 

  54. Yuki N, Taki T, Inagaki F, Kasama T, Takahashi M, Saito K, Handa S, Miyatake T (1993) A bacterium lipopolysaccharide that elicits Guillain-Barre syndrome has a GM1 ganglioside-like structure. J Exp Med 178(5):1771–1775

    Article  CAS  PubMed  Google Scholar 

  55. Yuki N (2007) Ganglioside mimicry and peripheral nerve disease. Muscle Nerve 35(6):691–711. https://doi.org/10.1002/mus.20762

    Article  PubMed  CAS  Google Scholar 

  56. Boffey J, Nicholl D, Wagner ER, Townson K, Goodyear C, Furukawa K, Furukawa K, Conner J, Willison HJ (2004) Innate murine B cells produce anti-disialosyl antibodies reactive with Campylobacter jejuni LPS and gangliosides that are polyreactive and encoded by a restricted set of unmutated V genes. J Neuroimmunol 152(1–2):98–111. https://doi.org/10.1016/j.jneuroim.2004.04.002

    Article  PubMed  CAS  Google Scholar 

  57. Bowes T, Wagner ER, Boffey J, Nicholl D, Cochrane L, Benboubetra M, Conner J, Furukawa K, Furukawa K, Willison HJ (2002) Tolerance to self gangliosides is the major factor restricting the antibody response to lipopolysaccharide core oligosaccharides in Campylobacter jejuni strains associated with Guillain-Barre syndrome. Infect Immun 70(9):5008–5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Willison HJ, Veitch J, Swan AV, Baumann N, Comi G, Gregson NA, Llla I, Jacobs BC, Zielasek J, Hughes RAC (1999) Inter-laboratory validation of an ELISA for the determination of serum anti-ganglioside antibodies. Eur J Neurol 6:71–77

    Article  CAS  PubMed  Google Scholar 

  59. Alaedini A, Briani C, Wirguin I, Siciliano G, D'Avino C, Latov N (2002) Detection of anti-ganglioside antibodies in Guillain-Barre syndrome and its variants by the agglutination assay. J Neurol Sci 196(1–2):41–44

    Article  CAS  PubMed  Google Scholar 

  60. Ravindranath MH, Muthugounder S, Saravanan TS, Presser N, Morton DL (2005) Human antiganglioside autoantibodies: validation of ELISA. Ann N Y Acad Sci 1050:229–242. https://doi.org/10.1196/annals.1313.024

    Article  PubMed  CAS  Google Scholar 

  61. Rinaldi S, Brennan KM, Willison HJ (2012) Combinatorial glycoarray. Methods Mol Biol (Clifton, NJ) 808:413–423. https://doi.org/10.1007/978-1-61779-373-8_28

    Article  CAS  Google Scholar 

  62. Rongen HA, Bult A, van Bennekom WP (1997) Liposomes and immunoassays. J Immunol Methods 204(2):105–133

    Article  CAS  PubMed  Google Scholar 

  63. Hahm HS, Schlegel MK, Hurevich M, Eller S, Schuhmacher F, Hofmann J, Pagel K, Seeberger PH (2017) Automated glycan assembly using the Glyconeer 2.1 synthesizer. Proc Natl Acad Sci U S A 114(17):E3385–e3389. https://doi.org/10.1073/pnas.1700141114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Liu Y, McBride R, Stoll M, Palma AS, Silva L, Agravat S, Aoki-Kinoshita KF, Campbell MP, Costello CE, Dell A, Haslam SM, Karlsson NG, Khoo KH, Kolarich D, Novotny MV, Packer NH, Ranzinger R, Rapp E, Rudd PM, Struwe WB, Tiemeyer M, Wells L, York WS, Zaia J, Kettner C, Paulson JC, Feizi T, Smith DF (2016) The minimum information required for a glycomics experiment (MIRAGE) project: improving the standards for reporting glycan microarray-based data. Glycobiology. https://doi.org/10.1093/glycob/cww118

  65. Regina TA, Hakomori SI (2008) Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780(3):421–433. https://doi.org/10.1016/j.bbagen.2007.10.008. S0304-4165(07)00240–1 [pii]

    Article  CAS  Google Scholar 

  66. Varki A (1994) Selectin ligands. Proc Natl Acad Sci U S A 91(16):7390–7397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ritz MF, Lechner-Scott J, Scott RJ, Fuhr P, Malik N, Erne B, Taylor V, Suter U, Schaeren-Wiemers N, Steck AJ (2000) Characterisation of autoantibodies to peripheral myelin protein 22 in patients with hereditary and acquired neuropathies. J Neuroimmunol 104(2):155–163

    Article  CAS  PubMed  Google Scholar 

  68. Schwarz A, Futerman AH (1996) The localization of gangliosides in neurons of the central nervous system: the use of anti-ganglioside antibodies. Biochim Biophys Acta 1286(3):247–267. S0304-4157(96)00011-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  69. Lloyd KO, Gordon CM, Thampoe IJ, DiBenedetto C (1992) Cell surface accessibility of individual gangliosides in malignant melanoma cells to antibodies is influenced by the total ganglioside composition of the cells. Cancer Res 52(18):4948–4953

    PubMed  CAS  Google Scholar 

  70. Greenshields KN, Halstead SK, Zitman FM, Rinaldi S, Brennan KM, O'Leary C, Chamberlain LH, Easton A, Roxburgh J, Pediani J, Furukawa K, Furukawa K, Goodyear CS, Plomp JJ, Willison HJ (2009) The neuropathic potential of anti-GM1 autoantibodies is regulated by the local glycolipid environment in mice. J Clin Invest 119(3):595–610. https://doi.org/10.1172/jci37338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Rinaldi S, Brennan KM, Willison HJ (2010) Heteromeric glycolipid complexes as modulators of autoantibody and lectin binding. Prog Lipid Res 49(1):87–95. https://doi.org/10.1016/j.plipres.2009.09.001

    Article  PubMed  CAS  Google Scholar 

  72. Kaida K, Kusunoki S (2010) Antibodies to gangliosides and ganglioside complexes in Guillain-Barre syndrome and Fisher syndrome: mini-review. J Neuroimmunol 223(1–2):5–12. https://doi.org/10.1016/j.jneuroim.2010.02.001

    Article  PubMed  CAS  Google Scholar 

  73. Kaida K, Morita D, Kanzaki M, Kamakura K, Motoyoshi K, Hirakawa M, Kusunoki S (2004) Ganglioside complexes as new target antigens in Guillain-Barre syndrome. Ann Neurol 56(4):567–571. https://doi.org/10.1002/ana.20222

    Article  PubMed  CAS  Google Scholar 

  74. Galban-Horcajo F, Vlam L, Delmont E, Halstead SK, van den Berg L, van der Pol WL, Willison HJ (2015) The diagnostic utility of determining anti-GM1: GalC complex antibodies in multifocal motor neuropathy: a validation study. J Neuromuscular Dis 2(2):157–165. https://doi.org/10.3233/jnd-150080

    Article  Google Scholar 

  75. Pestronk A, Choksi R, Blume G, Lopate G (1997) Multifocal motor neuropathy: serum IgM binding to a GM1 ganglioside-containing lipid mixture but not to GM1 alone. Neurology 48(4):1104–1106

    Article  CAS  PubMed  Google Scholar 

  76. Todeschini AR, Dos Santos JN, Handa K, Hakomori SI (2008) Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway. Proc Natl Acad Sci U S A 105(6):1925–1930. doi:https://doi.org/10.1073/pnas.0709619104

    Article  CAS  Google Scholar 

  77. Kusunoki S, Hitoshi S, Kaida K, Arita M, Kanazawa I (1999) Monospecific anti-GD1b IgG is required to induce rabbit ataxic neuropathy. Ann Neurol 45(3):400–403

    Article  CAS  PubMed  Google Scholar 

  78. McGonigal R, Rowan EG, Greenshields KN, Halstead SK, Humphreys PD, Rother RP, Furukawa K, Willison HJ (2010) Anti-GD1a antibodies activate complement and calpain to injure distal motor nodes of Ranvier in mice. Brain 133(Pt 7):1944–1960. https://doi.org/10.1093/brain/awq119

    Article  PubMed  Google Scholar 

  79. Kusunoki S, Hitoshi S, Kaida K, Murayama S, Kanazawa I (1999) Degeneration of rabbit sensory neurons induced by passive transfer of anti-GD1b antiserum. Neurosci Lett 273(1):33–36. S0304394099006217 [pii]

    Article  CAS  PubMed  Google Scholar 

  80. Goodfellow JA, Bowes T, Sheikh K, Odaka M, Halstead SK, Humphreys PD, Wagner ER, Yuki N, Furukawa K, Furukawa K, Plomp JJ, Willison HJ (2005) Overexpression of GD1a ganglioside sensitizes motor nerve terminals to anti-GD1a antibody-mediated injury in a model of acute motor axonal neuropathy. J Neurosci 25(7):1620–1628

    Article  CAS  PubMed  Google Scholar 

  81. Nagai Y (1976) Ganglioside syndrome. Neurosci Lett 2:19604825

    Article  Google Scholar 

  82. Saida T, Saida K, Silberberg DH (1979) Demyelination produced by experimental allergic neuritis serum and anti-galactocerebroside antiserum in central nervous system cultures. An ultrastructural study. Acta Neuropathol 48:19–25

    Article  CAS  PubMed  Google Scholar 

  83. Sumner A (1982) Electrophysiological and morphological effects of the injection of Guillain-Barré sera in the sciatic nerve of the rat. Rev Neurol (Paris) 138:17–24

    CAS  Google Scholar 

  84. Yu RK, Ariga T, Kohriyama T, Kusunoki S, Maeda Y, Miyatani N (1990) Autoimmune mechanisms in peripheral neuropathies. Ann Neurol 27(Suppl):S30–S35

    Article  CAS  PubMed  Google Scholar 

  85. Hays AP, Latov N, Takatsu M, Sherman WH (1987) Experimental demyelination of nerve induced by serum of patients with neuropathy and an anti MAG IgM M protein. Neurology 37:242–256

    Article  CAS  PubMed  Google Scholar 

  86. Willison HJ, Trapp BD, Bacher JD, Dalakas MC, Griffin JW, Quarles RH (1988) Demyelination induced by intraneural injection of human antimyelin-associated glycoprotein antibodies. Muscle Nerve 11(11):1169–1176. https://doi.org/10.1002/mus.880111111

    Article  PubMed  CAS  Google Scholar 

  87. Tatum AH (1993) Experimental paraprotein neuropathy, demyelination by passive transfer of human IgM anti-myelin-associated glycoprotein. Ann Neurol 33:502–506

    Article  CAS  PubMed  Google Scholar 

  88. Kusunoki S, Shimizu J, Chiba R, Ugawa Y, Hitoshi S, Kanazawa I (1996) Experimental sensory neuropathy induced by sensitisation with ganglioside GD1b. Ann Neurol 39:324–331

    Article  Google Scholar 

  89. Hitoshi S, Kusunoki S, Murayama S, Tsuji S, Kanazawa I (1999) Rabbit experimental sensory ataxic neuropathy: anti-GD1b antibody-mediated trkC downregulation of dorsal root ganglia neurons. Neurosci Lett 260(3):157–160

    Article  CAS  PubMed  Google Scholar 

  90. Yuki N, Yamada M, Koga M, Odaka M, Susuki K, Tagawa Y, Ueda S, Kasama T, Ohnishi A, Hayashi S, Takahashi H, Kamijo M, Hirata K (2001) Animal model of axonal Guillain-Barre syndrome induced by sensitization with GM1 ganglioside. Ann Neurol 49(6):712–720

    Article  CAS  PubMed  Google Scholar 

  91. Susuki K, Nishimoto Y, Yamada M, Baba M, Ueda S, Hirata K, Yuki N (2003) Acute motor axonal neuropathy rabbit model: immune attack on nerve root axons. Ann Neurol 54(3):383–388

    Article  PubMed  Google Scholar 

  92. O’Hanlon GM, Humphreys PD, Goldman RS, Halstead SK, Bullens RW, Plomp JJ, Ushkaryov Y, Willison HJ (2003) Calpain inhibitors protect against axonal degeneration in a model of anti-ganglioside antibody-mediated motor nerve terminal injury. Brain 126(Pt 11):2497–2509. https://doi.org/10.1093/brain/awg254

    Article  PubMed  Google Scholar 

  93. Okada M, Itoh MM, Haraguchi M, Okajima T, Inoue M, Oishi H, Matsuda Y, Iwamoto T, Kawano T, Fukumoto S, Miyazaki H, Furukawa K, Aizawa S, Furukawa K (2002) b-Series ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apoptosis but impairs regeneration of the lesioned hypoglossal nerve. J Biol Chem 277(3):1633–1636

    Article  CAS  PubMed  Google Scholar 

  94. Halstead SK, Zitman FM, Humphreys PD, Greenshields K, Verschuuren JJ, Jacobs BC, Rother RP, Plomp JJ, Willison HJ (2008) Eculizumab prevents anti-ganglioside antibody-mediated neuropathy in a murine model. Brain 131(Pt 5):1197–1208. https://doi.org/10.1093/brain/awm316

    Article  PubMed  Google Scholar 

  95. Plomp JJ, Willison HJ (2009) Pathophysiological actions of neuropathy-related anti-ganglioside antibodies at the neuromuscular junction. J Physiol 587(Pt 16):3979–3999. https://doi.org/10.1113/jphysiol.2009.171702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Martin PT (2003) Glycobiology of the neuromuscular junction. J Neurocytol 32(5–8):915–929

    Article  CAS  PubMed  Google Scholar 

  97. Bullens RW, O'Hanlon GM, Wagner E, Molenaar PC, Furukawa K, Furukawa K, Plomp JJ, Willison HJ (2002) Complex gangliosides at the neuromuscular junction are membrane receptors for autoantibodies and botulinum neurotoxin but redundant for normal synaptic function. J Neurosci 22(16):6876–6884

    Article  CAS  PubMed  Google Scholar 

  98. Plomp JJ, Molenaar PC, O'Hanlon GM, Jacobs BC, Veitch J, Daha MR, Van Doorn PA, Van der Meche FGA, Vincent A, Morgan BP, Willison HJ (1999) Miller Fisher anti-GQ1b antibodies: a-latrotoxin-like effects on motor end plates. Ann Neurol 45:189–199

    Article  CAS  PubMed  Google Scholar 

  99. Halstead SK, O'Hanlon GM, Humphreys PD, Morrison DB, Morgan BP, Todd AJ, Plomp JJ, Willison HJ (2004) Anti-disialoside antibodies kill perisynaptic Schwann cells and damage motor nerve terminals via membrane attack complex in a murine model of neuropathy. Brain 127(Pt 9):2109–2123

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh J. Willison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Willison, H.J. (2018). Anti-ganglioside Antibodies in Peripheral Nerve Pathology. In: Sonnino, S., Prinetti, A. (eds) Gangliosides. Methods in Molecular Biology, vol 1804. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8552-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8552-4_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8551-7

  • Online ISBN: 978-1-4939-8552-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics