Skip to main content

Behavioral Teratogenesis in Drosophila melanogaster

  • Protocol
  • First Online:
Teratogenicity Testing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1797))

Abstract

Developmental biology is a fascinating branch of science which helps us to understand the mechanism of development, thus the findings are used in various therapeutic approach. Drosophila melanogaster served as a model to find the key molecules that initiate and regulate the mechanism of development. Various genes, transcription factors, and signaling pathways helping in development are identified in Drosophila. Many toxic compounds, which can affect the development, are also recognized using Drosophila model. These compounds, which can affect the development, are named as a teratogen. Many teratogens identified using Drosophila may also act as a teratogen for a human being since 75% of conservation exist between the disease genes present in Drosophila and human. There are certain teratogens, which do not cause developmental defect if exposed during pregnancy, however; behavioral defect appears in later part of development. Such compounds are named as a behavioral teratogen. Thus, it is worthy to identify the potential behavioral teratogen using Drosophila model. Drosophila behavior is well studied in various developmental stages. This chapter describes various methods which can be employed to test behavioral teratogenesis in Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coyle I, Wayner M, Singer G (1976) Behavioral teratogenesis: a critical evaluation. Pharmacol Biochem Behav 4(2):191–200

    Article  PubMed  CAS  Google Scholar 

  2. Hirsch HV, Lnenicka G, Possidente D et al (2012) Drosophila melanogaster as a model for lead neurotoxicology and toxicogenomics research. Front Genet 3:68

    Article  PubMed  PubMed Central  Google Scholar 

  3. Markow TA, Gottesman II (1993) Behavioral phenol deviance: a Lerneresque conjecture. Genetica 89(1):297–305

    Article  Google Scholar 

  4. Almeida SF, Rabelo LM, Souza JM et al (2016) Behavioral changes in female Swiss mice exposed to tannery effluents. Rev Ambient Água 11(3):519–534

    Article  CAS  Google Scholar 

  5. Bailey J, Oliveri A, Levin ED (2013) Zebrafish model systems for developmental neurobehavioral toxicology. Birth Defects Res C Embryo Today 99(1):14–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Schafer WR (2002) Neuropsychopharmacology of worms and flies. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology: the fifth generation of progress. Lippincott Williams & Wilkins, Philadephia, PA

    Google Scholar 

  7. Abnoos H, Fereidoni M, Mahdavi-Shahri N et al (2013) Developmental study of mercury effects on the fruit fly (Drosophila melanogaster). Interdiscip Toxicol 6(1):34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Affleck JG, Walker VK (2008) A role for Drosophila in understanding drug-induced cytotoxicity and teratogenesis. Cytotechnology 57(1):1–9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bossing T, Udolph G, Doe CQ, Technau GM (1996) The embryonic central nervous system lineages of Drosophila melanogaster: I neuroblast lineages derived from the ventral half of the neuroectoderm. Dev Biol 179(1):41–64

    Article  PubMed  CAS  Google Scholar 

  10. Brewster R, Bodmer R (1996) Cell lineage analysis of the Drosophila peripheral nervous system. Genesis 18(1):50–60

    CAS  Google Scholar 

  11. Doe CQ, Skeath JB (1996) Neurogenesis in the insect central nervous system. Curr Opin Neurobiol 6(1):18–24

    Article  PubMed  CAS  Google Scholar 

  12. Schmid A, Chiba A, Doe CQ (1999) Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. Development 126(21):4653–4689

    PubMed  CAS  Google Scholar 

  13. Rand MD, Kearney AL, Dao J, Clason T (2010) Permeabilization of Drosophila embryos for introduction of small molecules. Insect Biochem Mol Biol 40(11):792–804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wilson J (1968) Introduction: problems of teratogenic testing. In: Fink BR (ed) Toxicity of anesthetics. Williams and Williams, Baltimore, MD

    Google Scholar 

  15. Bainton RJ, Tsai LT, Singh CM et al (2000) Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila. Curr Biol 10(4):187–194

    Article  PubMed  CAS  Google Scholar 

  16. Sabat D, Patnaik A, Ekka B et al (2016) Investigation of titania nanoparticles on behaviour and mechanosensory organ of Drosophila melanogaster. Physiol Behav 167:76–85

    Article  PubMed  CAS  Google Scholar 

  17. Pappus SA, Ekka B, Sahu S et al (2017) A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster. J Nanopart Res 19(4):136

    Article  CAS  Google Scholar 

  18. Mishra M, Sabat D, Ekka B et al (2017) Oral intake of zirconia nanoparticle alters neuronal development and behaviour of Drosophila melanogaster. J Nanopart Res 19(8):282

    Article  CAS  Google Scholar 

  19. Moore MS, DeZazzo J, Luk AY et al (1998) Ethanol intoxication in Drosophila: genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell 93(6):997–1007

    Article  PubMed  CAS  Google Scholar 

  20. Nichols CD, Becnel J, Pandey UB (2012) Methods to assay Drosophila behavior. J Vis Exp 61:e3795

    Google Scholar 

  21. Rand MD (2010) Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol 32(1):74–83

    Article  PubMed  CAS  Google Scholar 

  22. Hardie RC (2012) Phototransduction mechanisms in Drosophila microvillar photoreceptors. Wiley Interdiscip Rev Membr Transp Signal 1(2):162–187

    Article  CAS  Google Scholar 

  23. Montell C (2009) A taste of the Drosophila gustatory receptors. Curr Opin Neurobiol 19(4):345–353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Weiss LA, Dahanukar A, Kwon JY et al (2011) The molecular and cellular basis of bitter taste in Drosophila. Neuron 69(2):258–272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Liu L, Li Y, Wang R et al (2007) Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature 450(7167):294–298

    Article  PubMed  CAS  Google Scholar 

  26. McKemy DD (2007) Temperature sensing across species. Pflugers Arch 454(5):777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Inagaki HK, Kamikouchi A, Ito K (2010) Methods for quantifying simple gravity sensing in Drosophila melanogaster. Nat Protoc 5(1):20–25

    Article  PubMed  CAS  Google Scholar 

  28. Kamikouchi A, Inagaki HK, Effertz T et al (2009) The neural basis of Drosophila gravity-sensing and hearing. Nature 458(7235):165–171

    Article  PubMed  CAS  Google Scholar 

  29. Lilly M, Carlson J (1990) smellblind: a gene required for Drosophila olfaction. Genetics 124(2):293–302

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Shaver S, Varnam C, Hilliker A, Sokolowski M (1998) The foraging gene affects adult but not larval olfactory-related behavior in Drosophila melanogaster. Behav Brain Res 95(1):23–29

    Article  PubMed  CAS  Google Scholar 

  31. Heimbeck G, Bugnon V, Gendre N et al (1999) Smell and taste perception in Drosophila melanogaster larva: toxin expression studies in chemosensory neurons. J Neurosci 19(15):6599–6609

    Article  PubMed  CAS  Google Scholar 

  32. Gerber B, Scherer S, Neuser K et al (2004) Visual learning in individually assayed Drosophila larvae. J Exp Biol 207(1):179–188

    Article  PubMed  CAS  Google Scholar 

  33. Liu L, Yermolaieva O, Johnson WA et al (2003) Identification and function of thermosensory neurons in Drosophila larvae. Nat Neurosci 6(3):267–273

    Article  PubMed  CAS  Google Scholar 

  34. Sokolowski MB, Pereira HS, Hughes K (1997) Evolution of foraging behavior in Drosophila by density-dependent selection. Proc Natl Acad Sci U S A 94(14):7373–7377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pereira HS, MacDonald DE, Hilliker AJ, Sokolowski MB (1995) Chaser (Csr), a new gene affecting larval foraging behavior in Drosophila melanogaster. Genetics 141(1):263–270

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Busto M, Iyengar B, Campos AR (1999) Genetic dissection of behavior: modulation of locomotion by light in the Drosophila melanogaster larva requires genetically distinct visual system functions. J Neurosci 19(9):3337–3344

    Article  PubMed  CAS  Google Scholar 

  37. Caldwell JC, Miller MM, Wing S et al (2003) Dynamic analysis of larval locomotion in Drosophila chordotonal organ mutants. Proc Natl Acad Sci U S A 100(26):16053–16058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yang P, Shaver SA, Hilliker AJ, Sokolowski MB (2000) Abnormal turning behavior in Drosophila larvae: identification and molecular analysis of scribbler (sbb). Genetics 155(3):1161–1174

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Suster ML, Martin JR, Sung C, Robinow S (2003) Targeted expression of tetanus toxin reveals sets of neurons involved in larval locomotion in Drosophila. Dev Neurobiol 55(2):233–246

    Article  CAS  Google Scholar 

  40. Luna AJF, von Essen AM, Widmer YF, Sprecher SG (2013) Light preference assay to study innate and circadian regulated photobehavior in Drosophila larvae. J Vis Exp (74): e50237

    Google Scholar 

  41. Shaw PJ, Cirelli C, Greenspan RJ, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287(5459):1834–1837

    Article  PubMed  CAS  Google Scholar 

  42. Takahashi JS, Hong H-K, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9(10):764–775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kim H, Choi MS, Kang K, Kwon JY (2015) Behavioral analysis of bitter taste perception in Drosophila larvae. Chem Senses 41(1):85–94

    Article  PubMed  CAS  Google Scholar 

  44. Neely GG, Keene AC, Duchek P et al (2011) TrpA1 regulates thermal nociception in Drosophila. PLoS One 6(8):e24343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sameoto D, Miller RS (1968) Selection of pupation site by Drosophila melanogaster and D. simulans. Ecology 49(1):177–180

    Article  Google Scholar 

  46. Beltramí M, Medina-Muñoz MC, Del Pino F et al (2012) Chemical cues influence pupation behavior of Drosophila simulans and Drosophila buzzatii in nature and in the laboratory. PLoS One 7(6):e39393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Le Bourg É, Minois N (1999) A mild stress, hypergravity exposure, postpones behavioral aging in Drosophila melanogaster. Exp Gerontol 34(2):157–172

    Article  PubMed  Google Scholar 

  48. Hoffmann AA, Harshman LG (1999) Desiccation and starvation resistance in Drosophila: patterns of variation at the species, population and intrapopulation levels. Heredity 83(6):637–643

    Article  PubMed  Google Scholar 

  49. Spieth HT (1974) Courtship behavior in Drosophila. Annu Rev Entomol 19(1):385–405

    Article  PubMed  CAS  Google Scholar 

  50. Shaltiel-Karyo R, Davidi D, Menuchin Y et al (2012) A novel, sensitive assay for behavioral defects in Parkinson's disease model Drosophila. Parkinson’s Dis 2012:697564

    Google Scholar 

  51. Feany MB, Bender WW (2000) A Drosophila model of Parkinson's disease. Nature 404(6776):394–398

    Article  PubMed  CAS  Google Scholar 

  52. Shaltiel-Karyo R, Frenkel-Pinter M, Egoz-Matia N et al (2010) Inhibiting α-synuclein oligomerization by stable cell-penetrating β-synuclein fragments recovers phenotype of Parkinson's disease model flies. PLoS One 5(11):e13863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Le Bourg É, Buecher C (2002) Learned suppression of photopositive tendencies inDrosophila melanogaster. Learn Behav 30(4):330–341

    Article  Google Scholar 

  54. Seugnet L, Suzuki Y, Stidd R, Shaw P (2009) Aversive phototaxic suppression: evaluation of a short‐term memory assay in Drosophila melanogaster. Genes Brain Behav 8(4):377–389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ali YO, Escala W, Ruan K, Zhai RG (2011) Assaying locomotor, learning, and memory deficits in Drosophila models of neurodegeneration. J Vis Exp 49:2504

    Google Scholar 

  56. Kamyshev NG, Iliadi KG, Bragina JV et al (2002) Novel memory mutants in Drosophila: behavioral characteristics of the mutant nemy P153. BMC Neurosci 3(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cameron P, Hiroi M, Ngai J, Scott K (2010) The molecular basis for water taste in Drosophila. Nature 465(7294):91–95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Inamdar AA, Masurekar P, Bennett JW (2010) Neurotoxicity of fungal volatile organic compounds in Drosophila melanogaster. Toxicol Sci 117(2):418–426

    Article  PubMed  CAS  Google Scholar 

  59. Connolly K (1968) The social facilitation of preening behaviour in Drosophila melanogaster. Anim Behav 16(2):385–391

    Article  PubMed  CAS  Google Scholar 

  60. Weidmann U (1950) Untersuchungen zur Ethologie von Drosophila. Die Balz-und Putzhandlungen. Unpublished dissertation Zurich University 391

    Google Scholar 

Download references

Acknowledgments

We thank Mrs. Subhashree Priyadarshini for her help with the images presented in this chapter. Ms. Nibedita Nayak is gratefully acknowledged for her important comments on the larvae crawling experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mishra, M., Barik, B.K. (2018). Behavioral Teratogenesis in Drosophila melanogaster . In: Félix, L. (eds) Teratogenicity Testing. Methods in Molecular Biology, vol 1797. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7883-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7883-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7882-3

  • Online ISBN: 978-1-4939-7883-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics