Skip to main content

Evaluation of Thermal Stability of Cellulosomal Hydrolases and Their Complex Formation

  • Protocol
  • First Online:
Cellulases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1796))

Abstract

Enzymatic breakdown of plant biomass is an essential step for its utilization in biorefinery applications, and the products could serve as substrates for the sustainable and environmentally friendly production of fuels and chemicals. Toward this end, the incorporation of enzymes into polyenzymatic cellulosome complexes—able to specifically bind to and hydrolyze crystalline cellulosic materials, such as plant biomass—is known to increase the efficiency and the overall hydrolysis performance of a cellulase system. Despite their relative abundance in various mesophilic anaerobic cellulolytic bacteria, there are only a few reports of cellulosomes of thermophilic origin. However, since various biorefinery processes are favored by elevated temperatures, the development of thermophilic designer cellulosomes could be of great importance. Owing to the limited number of thermophilic cellulosomes, designer cellulosomes, composed of mixtures of mesophilic and thermophilic components, have been constructed. As a result, the overall thermal profile of the individual parts and the resulting complex has to be extensively evaluated. Here, we describe a practical guide for the determination of temperature stability for cellulases in the cellulosome complexes. The approach is also appropriate for other related enzymes, notably xylanases as well as other glycoside hydrolases. We provide detailed experimental procedures for the evaluation of the thermal stability of the individual designer cellulosome components and their complexes as well as protocols for the assessment of complex integrity at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hughes SR, Lopez-Nunez JC, Jones MA et al (2014) Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept. Appl Microbiol Biotechnol 98(20):8413–8431. https://doi.org/10.1007/s00253-014-5991-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lynd LR, Laser MS, Bransby D et al (2008) How biotech can transform biofuels. Nat Biotechnol 26(2):169–172. https://doi.org/10.1038/nbt0208-169

    Article  CAS  PubMed  Google Scholar 

  3. Artzi L, Bayer EA, Morais S (2017) Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol 15(2):83–95. https://doi.org/10.1038/nrmicro.2016.164

    Article  CAS  PubMed  Google Scholar 

  4. Belaich JP, Fierobe H-P, Pagès S et al (2004) From native to engineered cellulosomes. In: Ohmiya K, Sakka K, Karita S et al (eds) Genetics, biotechnology of lignocellulose degradation and biomass utilization. Uni Publishers Co., Ltd, Tokyo, pp 167–174

    Google Scholar 

  5. Lamed R, Setter E, Kenig R. Bayer EA (1983) The cellulosome – a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotech Bioeng Symp 13:163-181

    Google Scholar 

  6. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  CAS  Google Scholar 

  7. Bayer EA, Belaich J-P, Shoham Y, Lamed R (2004) The cellulosomes: multi-enzyme machines for degradation of plant cell wall polysaccharides. Ann Rev Microbiol 58:521–554

    Article  CAS  Google Scholar 

  8. Shoham Y, Lamed R, Bayer EA (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7:275–281

    Article  CAS  Google Scholar 

  9. Fierobe HP, Bayer EA, Tardif C et al (2002) Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. J Biol Chem 277(51):49621–49630. https://doi.org/10.1074/jbc.M207672200

    Article  CAS  PubMed  Google Scholar 

  10. You C, Zhang XZ, Sathitsuksanoh N et al (2012) Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Appl Environ Microbiol 78(5):1437–1444. https://doi.org/10.1128/AEM.07138-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bayer EA (2017) Cellulosomes and designer cellulosomes: why toy with nature? Environ Microbiol Rep 9(1):14–15. https://doi.org/10.1111/1758-2229.12489

    Article  PubMed  Google Scholar 

  12. Bayer EA, Morag E, Lamed R (1994) The cellulosome – a treasure-trove for biotechnology. Trends Biotechnol 12:378–386

    Article  Google Scholar 

  13. Fierobe HP, Pages S, Belaich A et al (1999) Cellulosome from Clostridium cellulolyticum: molecular study of the Dockerin/Cohesin interaction. Biochemistry 38(39):12822–12832

    Article  CAS  Google Scholar 

  14. Mechaly A, Fierobe H-P, Belaich A et al (2001) Cohesin-dockerin interaction in cellulosome assembly: a single hydroxyl group of a dockerin domain distinguishes between non-recognition and high-affinity recognition (Erratum). J Biol Chemistry 276:19678

    Article  CAS  Google Scholar 

  15. Mechaly A, Yaron S, Lamed R et al (2000) Cohesin-dockerin recognition in cellulosome assembly: experiment versus hypothesis. Proteins 39:170–177

    Article  CAS  Google Scholar 

  16. Pages S, Belaich A, Tardif C et al (1996) Interaction between the endoglucanase CelA and the scaffolding protein CipC of the Clostridium cellulolyticum cellulosome. J Bacteriol 178(8):2279–2286

    Article  CAS  Google Scholar 

  17. Galanopoulou AP, Morais S, Georgoulis A et al (2016) Insights into the functionality and stability of designer cellulosomes at elevated temperatures. Appl Microbiol Biotechnol 100(20):8731–8743. https://doi.org/10.1007/s00253-016-7594-5

    Article  CAS  PubMed  Google Scholar 

  18. Morais S, Stern J, Kahn A et al (2016) Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability. Biotechnol Biofuels 9:164. https://doi.org/10.1186/s13068-016-0577-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Artzi L, Dassa B, Borovok I et al (2014) Cellulosomics of the cellulolytic thermophile Clostridium clariflavum. Biotechnol Biofuels 7:100. https://doi.org/10.1186/1754-6834-7-100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Uttukar SM, Bayer EA, Borovok I et al (2016) Application of long sequence reads to upgrade genomes for Clostridium thermocellum AD2, Clostridium thermocellum LQRI, and Pelosinus fermentans R7. Genome Announc 4(5):e01043–e01016

    Google Scholar 

  21. Blumer-Schuette SE, Ozdemir I, Mistry D et al (2011) Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus. J Bacteriol 193(6):1483–1484. https://doi.org/10.1128/JB.01515-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stathopoulou PM, Galanopoulou AP, Anasontzis GE et al (2012) Assessment of the biomass hydrolysis potential in bacterial isolates from a volcanic environment: biosynthesis of the corresponding activities. World J Microbiol Biotechnol 28(9):2889–2902. https://doi.org/10.1007/s11274-012-1100-8

    Article  CAS  PubMed  Google Scholar 

  23. Blumer-Schuette SE, Brown SD, Sander KB et al (2014) Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 38(3):393–448. https://doi.org/10.1111/1574-6976.12044

    Article  CAS  PubMed  Google Scholar 

  24. Blumer-Schuette SE, Lewis DL, Kelly RM (2010) Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor. Appl Environ Microbiol 76(24):8084–8092. https://doi.org/10.1128/AEM.01400-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morais S, Barak Y, Hadar Y et al (2011) Assembly of xylanases into designer cellulosomes promotes efficient hydrolysis of the xylan component of a natural recalcitrant cellulosic substrate. MBio 2(6). https://doi.org/10.1128/mBio.00233-11

  26. Stern J, Kahn A, Vazana Y et al (2015) Significance of relative position of cellulases in designer cellulosomes for optimized cellulolysis. PLoS One 10(5):e0127326. https://doi.org/10.1371/journal.pone.0127326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Anbar M, Bayer EA (2012) Approaches for improving thermostability characteristics in cellulases. Methods Enzymol 510:261–271. https://doi.org/10.1016/B978-0-12-415931-0.00014-8

    Article  CAS  PubMed  Google Scholar 

  28. Anbar M, Gul O, Lamed R et al (2012) Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis. Appl Environ Microbiol 78(9):3458–3464. https://doi.org/10.1128/AEM.07985-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vazana Y, Morais S, Barak Y et al (2012) Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. Methods Enzymol 510:429–452. https://doi.org/10.1016/B978-0-12-415931-0.00023-9

    Article  CAS  PubMed  Google Scholar 

  30. Rhodes DG, Bossio RE, Laue TM (2009) Determination of size, molecular weight, and presence of subunits. Methods Enzymol 463:691–723. https://doi.org/10.1016/S0076-6879(09)63039-1

    Article  CAS  PubMed  Google Scholar 

  31. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Bayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kahn, A., Galanopoulou, A.P., Hatzinikolaou, D.G., Moraïs, S., Bayer, E.A. (2018). Evaluation of Thermal Stability of Cellulosomal Hydrolases and Their Complex Formation. In: Lübeck, M. (eds) Cellulases. Methods in Molecular Biology, vol 1796. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7877-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7877-9_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7876-2

  • Online ISBN: 978-1-4939-7877-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics