Skip to main content

The MicroRNA

  • Protocol
  • First Online:
MicroRNA Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1733))

Abstract

MicroRNAs (miRNAs), widely distributed, small regulatory RNA genes, target both messenger RNA (mRNA) degradation and suppression of protein translation based on sequence complementarity between the miRNA and its targeted mRNA. Different names have been used to describe various types of miRNA. During evolution, RNA retroviruses or transgenes invaded the eukaryotic genome and were inserted itself in the noncoding regions of DNA, conceivably acting as transposon-like jumping genes, providing defense from viral invasion and fine-tuning of gene expression as a secondary level of gene modulation in eukaryotes. When a transposon is inserted in the intron, it becomes an intronic miRNA, taking advantage of the protein synthesis machinery, i.e., mRNA transcription and splicing, as a means for processing and maturation. MiRNAs have been found to play an important, but not life-threatening, role in embryonic development. They might play a pivotal role in diverse biological systems in various organisms, facilitating a quick response and accurate plotting of body physiology and structures. Based on these unique properties, manufactured intronic miRNAs have been developed for in vitro evaluation of gene function, in vivo gene therapy, and generation of transgenic animal models. The biogenesis of miRNAs, circulating miRNAs, miRNAs and cancer, iPSCs, and heart disease are presented in this chapter, highlighting some recent studies on these topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holley RW (1965) Structure of an alanine transfer ribonucleic acid. JAMA 194:868–871

    Article  CAS  PubMed  Google Scholar 

  2. Maxwell ES, Fournier MJ (1995) The small nucleolar RNAs. Annu Rev Biochem 64:897–934

    Article  CAS  PubMed  Google Scholar 

  3. Tycowski KT, Shu MD, Steitz JA (1996) A mammalian gene with introns instead of exons generating stable RNA products. Nature 379:464–466

    Article  CAS  PubMed  Google Scholar 

  4. Filipowicz W (2000) Imprinted expression of small nucleolar RNAs in brain: time for RNomics. Proc Natl Acad Sci U S A 97:14035–14037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Allmang C, Kufel J, Chanfreau G, Mitchell P, Petfalski E, Tollervey D (1999) Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 18:5399–5410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van Hoof A, Parker R (1999) The exosome: a proteasome for RNA? Cell 99:347–350

    Article  PubMed  Google Scholar 

  7. Frank DN, Roiha H, Guthrie C (1994) Architecture of the U5 small nuclear RNA. Mol Cell Biol 14:2180–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stavianopoulos JG, Karkus JD, Charguff E (1971) Nucleic acid polymerase of the developing chicken embryos: a DNA Polymerase preferring a hybrid template. Proc Natl Acad Sci U S A 68:2207–2211

    Article  Google Scholar 

  9. Stavianopoulos JG, Karkus JD, Charguff E (1972) Mechanism of DNA replication by highly purified DNA polymerase of chicken embryos. Proc Natl Acad Sci U S A 69:2609–2613

    Article  Google Scholar 

  10. Wank H, Schroeder R (1996) Antibiotic-induced oligomerisation of group I intron RNA. J Mol Biol 258:53–61

    Article  CAS  PubMed  Google Scholar 

  11. van der Krol AR, Mur LA, Beld M, Mol JN, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299

    Article  PubMed  PubMed Central  Google Scholar 

  12. Napoli C, Lemieux C, Jorgensen RA (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matzke MA, Primig MJ, Trnovsky J, Matzke AJM (1989) Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J 8:643–649

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  15. Shi Y (2003) Mammalian RNAi for the masses. Trends Genet 19:9–12

    Article  PubMed  Google Scholar 

  16. Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC, Shi Y (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A 99:5515–5520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89

    Article  CAS  PubMed  Google Scholar 

  19. Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic repeats. Science 297:1831

    Article  CAS  PubMed  Google Scholar 

  20. Kuwabara T, Hsieh J, Nakashima K, Taira K, Gage FH (2004) A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116:779–793

    Article  CAS  PubMed  Google Scholar 

  21. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  22. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  CAS  PubMed  Google Scholar 

  23. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T (2003) New microRNAs from mouse and human. RNA 9:175–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  CAS  PubMed  Google Scholar 

  25. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2003) Nuclear export of microRNA precursors. Science 303:95–98

    Article  PubMed  CAS  Google Scholar 

  26. Ying SY, Lin SL (2005) Intronic microRNAs (miRNAs). Biochem Biophys Res Commun 326:515–520

    Article  CAS  PubMed  Google Scholar 

  27. Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81

    Article  CAS  PubMed  Google Scholar 

  28. Tang G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30:106–114

    Article  CAS  PubMed  Google Scholar 

  29. Lambowitz AM, Zimmerly S (2004) Mobile group II introns. Annu Rev Genet 38:1–35

    Article  CAS  PubMed  Google Scholar 

  30. Coghlan A, Wolfe KH (2004) Origins of recently gained introns in Caenorhabditis. Proc Natl Acad Sci U S A 101:11362–11367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harper PS (1989) Myotonic dystrophy, 2nd edn. Saunders, London

    Google Scholar 

  32. Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, Day JW, Ranum LP (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293:864–867

    Article  CAS  PubMed  Google Scholar 

  33. Aravin AA, Sachidanadam R, Girard A, Fejes-Toth K, Hannon GJ (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316:744–747

    Article  CAS  PubMed  Google Scholar 

  34. Siomi MC, Miyoshi T, Siomi H (2010) piRNA-mediated silencing in Drosophila germlines. Semin Cell Dev Biol 21:754–749

    Article  CAS  PubMed  Google Scholar 

  35. Betel D, Sheridan R, Marks DS, Sander C (2007) Computational analysis of mouse piRNA sequence and biogenesis. PLoS Comput Biol 3:2219–2227

    CAS  Google Scholar 

  36. Shpiz S, Kwon D, Rozovsky Y, Kalmykova A (2009) rasiRNA pathway controls antisense expression of Drosophila telomeric transposons in the nucleus. Nucleic Acids Res 37:267–278

    Article  CAS  Google Scholar 

  37. Pelisson A, Sarot E, Payen-Groschene G, Bucheton A (2007) A novel repeat-associated small interfering RNA -mediated silencing pathway downregulates complementary sense gypsy transcripts in somatic cells of the Drosophila ovary. J Virol 81:1951–1960

    Article  CAS  PubMed  Google Scholar 

  38. Gasciolli V, Mallory AC, Bartel DP, Vaucheret H (2005) Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15:1–7

    Article  CAS  Google Scholar 

  39. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  40. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahiya R (2006) Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A 103:17337–17342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A 105:1608–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang H, Zhu JK (2014) Emerging roles of RNA processing factors in regulating long non-coding RNAs. RNA Biol 11:793–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee JT, Bartolomei MS (2013) X-Inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152:1308–1323

    Article  CAS  PubMed  Google Scholar 

  45. Chen LL, Carmichael GG (2010) Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol 22:357–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33:2697–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101

    Article  CAS  PubMed  Google Scholar 

  49. Lin SL, Chang D, DY W, Ying SY (2003) A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution. Biochem Biophys Res Commun 310:754–760

    Article  CAS  PubMed  Google Scholar 

  50. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Meijer HA, Smith EM, Bushell M (2014) Regulation of miRNA strand selection: follow the leader? Biochem Soc Trans 42:1135–1140

    Article  CAS  PubMed  Google Scholar 

  52. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  CAS  PubMed  Google Scholar 

  53. Hammond SM (2014) An overview of microRNAs. Nat Rev Mol Cell Biol 15:509–524

    Article  CAS  Google Scholar 

  54. Ha M, Kim VN (2015) Regulation of microRNA biogenesis. Adv Drug Deliv Rev 87:3–14

    Article  CAS  Google Scholar 

  55. Yang JS, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43:892–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Daugaard I, Hansen TB (2017) Biogenesis and function of Ago-associated RNAs. Trends Genet 33:208–219

    Article  CAS  PubMed  Google Scholar 

  57. Watson JD (2008) Molecular biology of the gene. Cold Spring Harbor Laboratory Press, San Francisco, CA, pp 641–648

    Google Scholar 

  58. Dueck A, Meister G (2014) Assembly and function of small RNA - argonaute protein complexes. Biol Chem 395:611–629

    Article  CAS  PubMed  Google Scholar 

  59. Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14:447–459

    Article  CAS  PubMed  Google Scholar 

  60. Brennecke J et al (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18:504–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lai EC (2002) microRNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364

    Article  CAS  PubMed  Google Scholar 

  63. Jee D, Lai EC (2014) Alteration of miRNA activity via context-specific modifications of Argonaute proteins. Trends Cell Biol 24:546–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nakanishi K (2016) Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip Rev RNA 7:637–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ana Eulalio A, Felix Tritschler F, Regina Büttner R, Oliver Weichenrieder O, Elisa Izaurralde E, Vincent Truffault V (2009) The RRM domain in GW182 proteins contributes to miRNA-mediated gene silencing. Nucleic Acids Res 37:2974–2983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP, Doudna JA (2015) Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell 57:397–407

    Article  CAS  PubMed  Google Scholar 

  67. Grosshans H (2010) Regulation of MicroRNAs. Springer Science & Business Media, New York, NY

    Book  Google Scholar 

  68. Cho CJ, Myung SJ, Chang S (2017) ADAR1 and microRNA; a hidden crosstalk in cancer. Int J Mol Sci 18(4):pii: E799. https://doi.org/10.3390/ijms18040799

    Article  Google Scholar 

  69. Skeparnias I, Αnastasakis D, Shaukat AN, Grafanaki K, Stathopoulos C (2015) Expanding the repertoire of deadenylases. RNA Biol 7:1–6

    Google Scholar 

  70. Zhang X, Devany E, Murphy MR, Glazman G, Persaud M, Kleiman FE (2015) PARN deadenylase is involved in miRNA-dependent degradation of TP53 mRNA in mammalian cells. Nucleic Acids Res 43:10925–10938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Svobodova E, Kubikova J, Svoboda P (2016) Production of small RNAs by mammalian Dicer. Pflugers Arch 468:1089–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fitzgerald ME, Vela A, Pyle AM (2014) Dicer-related helicase 3 forms an obligate dimer for recognizing 22G-RNA. Nucleic Acids Res 42:3919–3930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yi T, Arthanari H, Akabayov B, Song H, Papadopoulos E, Qi HH, Jedrychowski M, Güttler T, Guo C, Luna RE, Gygi SP, Huang SA, Wagner G (2015) eIF1A augments Ago2-mediated Dicer-independent miRNA biogenesis and RNA interference. Nat Commun 6:7194. https://doi.org/10.1038/ncomms8194

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pillai RS, Artus CG, Filipowicz W (2004) Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 10:1518–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Richard WC, Erik JS (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  Google Scholar 

  76. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ, Zanesi N, Crawford M, Ozer GH, Wernicke D, Alder H, Caligiuri MA, Nana-Sinkam P, Perrotti D, Croce CM (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A 109:E2110–E2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. He S, Chu J, Wu LC, Mao H, Peng Y, Alvarez-Breckenridge CA, Hughes T, Wei M, Zhang J, Yuan S, Sandhu S, Vasu S, Benson DM Jr, Hofmeister CC, He X, Ghoshal K, Devine SM, Caligiuri MA, Yu J (2013) MicroRNAs activate natural killer cells through Toll-like receptor signaling. Blood 121:4663–4671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hessvik NP, Sandvig K, Llorente A (2013) Exosomal miRNAs as biomarkers for prostate cancer. Front Genet 1819:1154–1163

    Google Scholar 

  79. Phuyal S, Hessvik NP, Skotland T, Sandvig K, Llorente A (2014) Regulation of exosome release by glycosphingolipids and flotillins. FEBS J 281:2214–2227

    Article  CAS  PubMed  Google Scholar 

  80. Marfella R, Di Filippo C, Potenza N, Sardu C, Rizzo MR, Siniscalchi M, Musacchio E, Barbieri M, Mauro C, Mosca N, Solimene F, Mottola MT, Russo A, Rossi F, Paolisso G, D’Amico M (2013) Circulating microRNA changes in heart failure patients treated with cardiac resynchronization therapy: responders vs. non-responders. Eur J Heart Fail 15:1277–1288

    Article  CAS  PubMed  Google Scholar 

  81. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Harding CV, Heuser JE, Stahl PD (2013) Exosomes: looking back three decades and into the future. J Cell Niol 200:367–371

    Article  CAS  Google Scholar 

  83. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA (2011) MicroRNAs in body fluids--the mix of hormones and biomarkers. Nat Rev Clin Oncol 8:467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110:483–495

    Article  CAS  PubMed  Google Scholar 

  85. Etheridge A, Lee I, Hood L, Galas D, Wang K (2017) Extracellular microRNA: a new source of biomarkers. Mutat Res 717:85–90

    Article  CAS  Google Scholar 

  86. Lin SL, Chang DC, Chang-Lin S, Lin CH, DT W, Chen DT, Ying SY (2008) Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14:2115–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin SL, Chang DC, Ying SY, Leu D, Wu DT (2010) MicroRNA miR-302 inhibits the tumorigenecity of human pluripotent stem cells by coordinate suppression of the CDK2 and CDK4/6 cell cycle pathways. Cancer Res 70:9473–9482

    Article  CAS  PubMed  Google Scholar 

  88. Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, Snitow M, Morley M, Li D, Petrenko N, Zhou S, Lu M, Gao E, Koch WJ, Stewart KM, Morrisey EE (2015) A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med 7(279):279ra38. https://doi.org/10.1126/scitranslmed.3010841

    Article  PubMed  CAS  Google Scholar 

  89. Liu M, Tao G, Liu Q, Liu K, Yang X (2017) MicroRNA let-7g alleviates atherosclerosis via the targeting of LOX-1 in vitro and in vivo. Int J Mol Med 40:57. https://doi.org/10.3892/ijmm.2017.2995

    Article  PubMed  PubMed Central  Google Scholar 

  90. Chang-Lin S, Hung A, Chang DC, Lin YW, Ying SY, Lin SL (2016) Novel glycylated sugar alcohols protect ESC-specific microRNAs from degradation in iPS cells. Nucleic Acids Res 44:4894–4906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Huang X, Jia Z (2013) Construction of HCC-targeting artificial miRNAs using natural miRNA precursors. Exp Ther Med 6:209–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bartel D (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  93. Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12

    Article  CAS  PubMed  Google Scholar 

  94. Baranwal S, Alahari SK (2010) miRNA control of tumor cell invasion and metastasis. Int J Cancer 126:1283–1222

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Palma Flores C, García-Vázquez R, Gallardo Rincón D, Ruiz-García E, Astudillo de la Vega H, Marchat LA, Salinas Vera YM, López-Camarillo C (2017) MicroRNAs driving invasion and metastasis in ovarian cancer: Opportunities for translational medicine. Int J Oncol 50:1461–1476

    Article  PubMed  Google Scholar 

  96. Yan J, Ma C, Gao Y (2017) MicroRNA-30a-5p suppresses epithelial-mesenchymal transition by targeting profilin-2 in high invasive non-small cell lung cancer cell lines. Oncol Rep 37:3146–3154

    Article  PubMed  Google Scholar 

  97. Jansson MD, Lund AH (2012) MicroRNA and cancer. Mol Oncol 6:590–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Farazi TA, Hoell JI, Morozov P, Tuschl T (2013) MicroRNAs in human cancer. Adv Exp Med Biol 774:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Acunzo M, Romano G, Wernicke D, Croce CM (2015) MicroRNA and cancer--a brief overview. Adv Biol Regul 57:1–9

    Article  CAS  PubMed  Google Scholar 

  100. Iorio MV, Croce CM (2017) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4:143. 10.15252/emmm.201707779

    Article  CAS  Google Scholar 

  101. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222

    Article  CAS  PubMed  Google Scholar 

  102. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270:488–498

    Article  CAS  PubMed  Google Scholar 

  103. Li HL, Wei JF, Fan LY, Wang SH, Zhu L, Li TP, Lin G, Sun Y, Sun ZJ, Ding J, Liang XL, Li J, Han Q, Zhao RC (2016) miR-302 regulates pluripotency, teratoma formation and differentiation in stem cells via an AKT1/OCT4-dependent manner. Cell Death Dis 7:e2078. https://doi.org/10.1038/cddis.2015.383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Liang Z, Ahn J, Guo D, Votaw JR, Shim H (2013) MicroRNA-302 replacement therapy sensitizes breast cancer cells to ionizing radiation. Pharm Res 30:1008–1016

    Article  CAS  PubMed  Google Scholar 

  105. Wang Y, Zhao L, Xiao Q, Jiang L, He M, Bai X, Ma M, Jiao X, Wei M (2016) miR-302a/b/c/d cooperatively inhibit BCRP expression to increase drug sensitivity in breast cancer cells. Gynecol Oncol 141:592–601

    Article  CAS  PubMed  Google Scholar 

  106. Zhao L, Wang Y, Jiang L, He M, Bai X, Yu L, Wei M (2016) MiR-302a/b/c/d cooperatively sensitizes breast cancer cells to adriamycin via suppressing P-glycoprotein (P-gp) by targeting MAP/ERK kinase kinase 1 (MEKK1). J Exp Clin Cancer Res 35:25. https://doi.org/10.1186/s13046-016-0300-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Ge T, Yin M, Yang M, Liu T, Lou G (2014) MicroRNA-302b suppresses human epithelial ovarian cancer cell growth by targeting RUNX1. Cell Physiol Biochem 34:2209–2220

    Article  CAS  PubMed  Google Scholar 

  108. Yan GJ, Yu F, Wang B, Zhou HJ, Ge QY, Su J, YL H, Sun HX, Ding LJ (2014) MicroRNA miR-302 inhibits the tumorigenicity of endometrial cancer cells by suppression of Cyclin D1 and CDK1. Cancer Lett 345:39–47

    Article  CAS  PubMed  Google Scholar 

  109. Cai N, Wang YD, Zheng PS (2013) The microRNA-302-367 cluster suppresses the proliferation of cervical carcinoma cells through the novel target AKT1. RNA 19:85–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Maadi H, Moshtaghian A, Taha MF, Mowla SJ, Kazeroonian A, Haass NK, Javeri A (2016) Multimodal tumor suppression by miR-302 cluster in melanoma and colon cancer. Int J Biochem Cell Biol 81(Pt A):121–132

    Article  CAS  PubMed  Google Scholar 

  111. Wang L, Yao J, Shi X, Hu L, Li Z, Song T, Huang C (2013) MicroRNA-302b suppresses cell proliferation by targeting EGFR in human hepatocellular carcinoma SMMC-7721 cells. BMC Cancer 13:448. https://doi.org/10.1186/1471-2407-13-448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Koga C, Kobayashi S, Nagano H, Tomimaru Y, Hama N, Wada H, Kawamoto K, Eguchi H, Konno M, Ishii H, Umeshita K, Doki Y, Mori M (2014) Reprogramming using microRNA-302 improves drug sensitivity in hepatocellular carcinoma cells. Ann Surg Oncol Suppl 4:S591–S600

    Article  Google Scholar 

  113. Wang L, Yao J, Zhang X, Guo B, Le X, Cubberly M, Li Z, Nan K, Song T, Huang C (2014) miRNA-302b suppresses human hepatocellular carcinoma by targeting AKT2. Mol Cancer Res 12:190–202

    Article  CAS  PubMed  Google Scholar 

  114. Cai D, He K, Chang S, Tong D, Huang C (2015) MicroRNA-302b enhances the sensitivity of hepatocellular carcinoma cell lines to 5-FU via targeting Mcl-1 and DPYD. Int J Mol Sci 16:23668–23682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bourguignon LY, Wong G, Earle C, Chen L (2012) Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. J Biol Chem 287:32800–12824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen L, Min L, Wang X, Zhao J, Chen H, Qin J, Chen W, Shen Z, Tang Z, Gan Q, Ruan Y, Sun Y, Qin X, Gu J (2015) Loss of RACK1 promotes metastasis of gastric cancer by inducing a miR-302c/IL8 signaling loop. Cancer Res 75:3832–3841

    Article  CAS  PubMed  Google Scholar 

  117. Khodayari N, Mohammed KA, Lee H, Kaye F, Nasreen N (2016) MicroRNA-302b targets Mcl-1 and inhibits cell proliferation and induces apoptosis in malignant pleural mesothelioma cells. Am J Cancer Res 6:1996–2009

    PubMed  PubMed Central  Google Scholar 

  118. Hu Q, Wang YB, Zeng P, Yan GQ, Xin L, Hu XY (2017) Expression of long non-coding RNA (lncRNA) H19 in immunodeficient mice induced with human colon cancer cells. Eur Rev Med Pharmacol Sci 20:4880–4884

    Google Scholar 

  119. Ji Q, Liu X, Fu X, Zhang L, Sui H, Zhou L, Sun J, Cai J, Qin J, Ren J, Li Q (2014) Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PLoS One 8:e78700. https://doi.org/10.1371/journal.pone.0078700

    Article  CAS  Google Scholar 

  120. Ma T, Wang RP, Zou X (2016) Dioscin inhibits gastric tumor growth through regulating the expression level of lncRNA HOTAIR. BMC Complement Altern Med 16(1):383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Li SP, HX X, Yu Y, He JD, Wang Z, YJ X, Wang CY, Zhang HM, Zhang RX, Zhang JJ, Yao Z, Shen ZY (2016) LncRNA HULC enhances epithelial-mesenchymal transition to promote tumorigenesis and metastasis of hepatocellular carcinoma via the miR-200a-3p/ZEB1 signaling pathway. Oncotarget 7:42431–42446

    PubMed  PubMed Central  Google Scholar 

  122. Li W, Li H, Zhang L, Hu M, Li F, Deng J, An M, Wu S, Ma R, Lu J, Zhou Y (2017) Long non-coding RNA LINC00672 contributes to p53 protein-mediated gene suppression and promotes endometrial cancer chemosensitivity. J Biol Chem 292:5801–5813

    Article  CAS  PubMed  Google Scholar 

  123. Zhang Z, Zhou C, Chang Y, Zhang Z, Hu Y, Zhang F, Lu Y, Zheng L, Zhang W, Li X, Li X (2016) Long non-coding RNA CASC11 interacts with hnRNP-K and activates the WNT/β-catenin pathway to promote growth and metastasis in colorectal cancer. Cancer Lett 376:62–73

    Article  CAS  PubMed  Google Scholar 

  124. Nagini S (2017) Breast cancer: current molecular therapeutic targets and new players. Anticancer Agents Med Chem 17:152–163

    Article  CAS  PubMed  Google Scholar 

  125. Li AX, Xin WQ, Ma CG (2015) Fentanyl inhibits the invasion and migration of colorectal cancer cells via inhibiting the negative regulation of Ets-1 on BANCR. Biochem Biophys Res Commun 465:594–600

    Article  CAS  PubMed  Google Scholar 

  126. Zhou X, Ji G, Ke X, Gu H, Jin W, Zhang G (2015) MiR-141 inhibits gastric cancer proliferation by interacting with long noncoding RNA MEG3 and down-regulating E2F3 expression. Dig Dis Sci 60:3271–3282

    Article  CAS  PubMed  Google Scholar 

  127. Guo Q, Cheng Y, Liang T, He Y, Ren C, Sun L, Zhang G (2015) Comprehensive analysis of lncRNA-mRNA co-expression patterns identifies immune-associated lncRNA biomarkers in ovarian cancer malignant progression. Sci Rep 5:17683. https://doi.org/10.1038/srep17683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chang L, Li C, Lan T, Wu L, Yuan Y, Liu Q, Liu Z (2016) Decreased expression of long non-coding RNA GAS5 indicates a poor prognosis and promotes cell proliferation and invasion in hepatocellular carcinoma by regulating vimentin. Mol Med Rep 13:1541–1550

    Article  CAS  PubMed  Google Scholar 

  129. Xue Y, Ni T, Jiang Y, Li Y (2017) LncRNA GAS5 inhibits tumorigenesis and enhances radiosensitivity by suppressing miR-135b expression in non-small cell lung cancer. Oncol Res 25:1305. https://doi.org/10.3727/096504017X14850182723737

    Article  PubMed  Google Scholar 

  130. Mei Y, Si J, Wang Y, Huang Z, Zhu H, Feng S, Wu X, Wu L (2017) Long noncoding RNA GAS5 suppresses tumorigenesis by inhibiting miR-23a 5 expression in non-small cell lung cancer. Oncol Res 25:1027. https://doi.org/10.3727/096504016X14822800040451

    Article  PubMed  Google Scholar 

  131. Judson RL, Babiarz JE, Venere M, Blelloch R (2009) Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27:459–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li N, Long B, Han W, Yuan S, Wang K (2017) microRNAs: important regulators of stem cells. Stem Cell Res Ther 8:110. https://doi.org/10.1186/s13287-017-0551-0

    Article  PubMed  PubMed Central  Google Scholar 

  133. Rosa A, Brivanlou AH (2013) Regulatory non-coding RNAs in pluripotent stem cells. Int J Mol Sci 14:14346–14373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Stadler B, Ivanovska I, Mehta K, Song S, Nelson A, Tan Y, Mathieu J, Darby C, Blau CA, Ware C, Peters G, Miller DG, Shen L, Cleary MA, Ruohola-Baker H (2010) Characterization of microRNAs involved in embryonic stem cell states. Stem Cells Dev 19:935–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lin SL, Chang DC, Lin CH, Ying SY, Leu D, Wu DT (2011) Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res 39:1054–1065, 2011

    Article  CAS  PubMed  Google Scholar 

  136. Kuo CH, Ying SY (2012) Advances in microRNA-mediated reprogramming technology. Stem Cells Int 2012:823709. https://doi.org/10.1155/2012/823709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Slack JM (2009) Metaplasia and somatic cell reprogramming. J Pathol 217:161–168

    Article  CAS  PubMed  Google Scholar 

  138. Li W, Nakanishi M, Zumsteg A, Shear M, Wright C, Melton DA, Zhou Q (2014) In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes. Elife 3:e01846. https://doi.org/10.7554/eLife.01846

    PubMed  PubMed Central  Google Scholar 

  139. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA, Morrisey EE (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8:376–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, Saito T, Nishimura J, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Doki Y, Mori M (2011 Jun 3) (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8(6):633–638. https://doi.org/10.1016/j.stem.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  141. Barroso-delJesus A, Lucena-Aguilar G, Sanchez L, Ligero G, Gutierrez-Aranda I, Menendez P (2011) The Nodal inhibitor Lefty is negatively modulated by the microRNA miR-302 in human embryonic stem cells. FASEB J 25:1497–1508

    Article  CAS  PubMed  Google Scholar 

  142. Liao B, Bao X, Liu L, Feng S, Zovoilis A, Liu W, Xue Y, Cai J, Guo X, Qin B, Zhang R, Wu J, Lai L, Teng M, Niu L, Zhang B, Esteban MA, Pei D (2011) MicroRNA cluster 302–367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. J Biol Chem 286:17359–17364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, Blelloch R (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 29:443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lipchina I, Elkabetz Y, Hafner M, Sheridan R, Mihailovic A, Tuchil T, Sander C, Studer L, Betel D (2011) Genome-wide identification of microRNA targets human ES cells reveals a role for miR-302 in modulating BMP response. Genes Dev 25:2173–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu H, Deng S, Zhao Z, Zhang H, Xiao J, Song W, Gao F, Guan Y (2011) Oct4 regulates the miR-302 cluster in P19 mouse embryonic carcinoma cells. Mol Biol Rep 38:2155–2160

    Article  CAS  PubMed  Google Scholar 

  146. Card DA, Hebbar PB, Li L, Trotter KW, Komatsu Y, Mishina Y, Archer TK (2008) Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol 28:6426–6438

    Article  PubMed  CAS  Google Scholar 

  147. Hu S, Wilson KD, Ghosh Z, Han L, Wang Y, Lan F, Ransohoff KJ, Burridge P, Wu JC (2013) MicroRNA-302 increases reprogramming efficiency via repression of NR2F2. Stem Cells 31:259–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lin SL (2011) Concise review: deciphering the mechanism behind induced pluripotent stem cell generation. Stem Cells 29:1645–1649

    Article  PubMed  PubMed Central  Google Scholar 

  149. Terasawa K, Shimizu K, Tsujimoto G (2011) Synthetic pre-miRNA-based shRNA as potent RNAi triggers. J Nucleic Acids 2011:131579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Gurha P (2016) MicroRNAs in cardiovascular disease. Curr Opin Cardiol 31:249–254

    Article  PubMed  Google Scholar 

  151. van Rooij E, Olson EN (2012) MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov 11:860–872

    Article  PubMed  CAS  Google Scholar 

  152. van Amerongen MJ, Felix B, Engel FB (2008) Features of cardiomyocyte proliferation and its potential for cardiac regeneration. J Cell Mol Med 12:2233–2244

    Article  PubMed  PubMed Central  Google Scholar 

  153. Wu G, Huang ZP, Wang DZ (2013) MicroRNAs in cardiac regeneration and cardiovascular disease. Sci China Life Sci 56:907–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, Kaluza D, Tréguer K, Carmona G, Bonauer A, Horrevoets AJ, Didier N, Girmatsion Z, Biliczki P, Ehrlich JR, Katus HA, Müller OJ, Potente M, Zeiher AM, Hermeking H, Dimmeler S (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495:107–110

    Article  CAS  PubMed  Google Scholar 

  155. Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, Dorn GW II, van Rooij E, Olson EN (2011) MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 109:670–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA (2013) Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci U S A 110:187–192

    Article  CAS  PubMed  Google Scholar 

  157. Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492:376–381

    Article  CAS  PubMed  Google Scholar 

  158. Ikeda S, He A, Kong SW, Lu J, Bejar R, Bodyak N, Lee KH, Ma Q, Kang PM, Golub TR, Pu WT (2009) MicroRNA‑1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol. Cell. Biol 29:2193–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, Stack C, Latimer PA, Olsen EN, van Rooij E (2011) Therapeutic inhibition of miR‑208a improves cardiac function and survival during heart failure. Circulation 124:1537–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sluijter JP, van Mil A, van Vliet P, Metz CH, Liu J, Doevendans PA, Goumans MJ (2010) MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol 30:859–868

    Article  CAS  PubMed  Google Scholar 

  161. Yoo JK, Kim J, Choi SJ, Noh HM, Kwon YD, Yoo H, Yi HS, Chung HM, Kim JK (2012) Discovery and characterization of novel microRNAs during endothelial differentiation of human embryonic stem cells. Stem Cells Dev 21:2049–2057

    Article  CAS  PubMed  Google Scholar 

  162. Zhao W, Zhao SP, Zhao YH (2015) MicroRNA-143/-145 in cardiovascular diseases. Biomed Res Int 2015:531740

    PubMed  PubMed Central  Google Scholar 

  163. Chen T, Margariti A, Kelaini S, Cochrane A, Guha ST, Hu Y, Stitt AW, Zhang L, Xu Q (2015) MicroRNA-199b modulates vascular cell fate during iPS cell differentiation by targeting the Notch ligand Jagged1 and enhancing VEGF signaling. Stem Cells 33:1405–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Montgomery RL, Yu G, Latimer PA, Stack C, Robinson K, Dalby CM, Kaminski N, van Rooij E (2014) MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol Med 6:1347–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cheng AM, Byrom MW, Jeffrey Shelton J, Lance P, Ford LP (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Yao Ying .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ying, SY., Chang, D.C., Lin, SL. (2018). The MicroRNA. In: Ying, SY. (eds) MicroRNA Protocols . Methods in Molecular Biology, vol 1733. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7601-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7601-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7600-3

  • Online ISBN: 978-1-4939-7601-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics