Skip to main content

Assessing Mitochondrial Bioenergetics by Respirometry in Cells or Isolated Organelles

  • Protocol
  • First Online:
AMPK

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1732))

Abstract

Mitochondrial oxidative phosphorylation is central for generating ATP and maintaining energy homeostasis in most eukaryotic cells. The ex vivo measurement of mitochondrial oxygen consumption rates in intact cells or isolated organelles is a valuable approach to assess mitochondrial bioenergetics in various experimental conditions. In this chapter, we describe several step-by-step protocols for measuring mitochondrial respiration in intact cells, permeabilized cells (in situ mitochondria), and isolated organelles using both Clark-type polarographic oxygen electrode devices and the newly developed oxygen-sensing fluorophore-based Seahorse technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicholls DG, Ferguson SJ (2002) Bioenergetics. Academic Press, London

    Google Scholar 

  2. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  3. Oakhill JS, Scott JW, Kemp BE (2012) AMPK functions as an adenylate charge-regulated protein kinase. Trends Endocrinol Metab 23(3):125–132. https://doi.org/10.1016/j.tem.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  4. Hardie DG (2014) AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr 34:31–55. https://doi.org/10.1146/annurev-nutr-071812-161148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guigas B, Viollet B (2016) Targeting AMPK: from ancient drugs to new small-molecule activators. EXS 107:327–350. https://doi.org/10.1007/978-3-319-43589-3_13

    CAS  PubMed  Google Scholar 

  6. Clark LC Jr, Helmsworth JA, Kaplan S, Sherman RT, Taylor Z (1953) Polarographic measurement of oxygen tension in whole blood and tissues during total by-pass of the heart. Surg Forum 4:93–96

    PubMed  Google Scholar 

  7. Pelgrom LR, van der Ham AJ, Everts B (2016) Analysis of TLR-induced metabolic changes in dendritic cells using the seahorse XF(e)96 extracellular flux analyzer. Methods Mol Biol 1390:273–285. https://doi.org/10.1007/978-1-4939-3335-8_17

    Article  CAS  PubMed  Google Scholar 

  8. Hogeboom GH, Schneider WC, Pallade GE (1948) Cytochemical studies of mammalian tissues; isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate material. J Biol Chem 172(2):619–635

    CAS  PubMed  Google Scholar 

  9. Klingenberg M, Slenczka W (1959) Pyridine nucleotide in liver mitochondria. An analysis of their redox relationships. Biochem Z 331:486–517

    CAS  PubMed  Google Scholar 

  10. Hill HD, Straka JG (1988) Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Anal Biochem 170(1):203–208

    Article  CAS  PubMed  Google Scholar 

  11. Batandier C, Guigas B, Detaille D, El-Mir MY, Fontaine E, Rigoulet M, Leverve XM (2006) The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin. J Bioenerg Biomembr 38(1):33–42. https://doi.org/10.1007/s10863-006-9003-8

    Article  CAS  PubMed  Google Scholar 

  12. Lacraz G, Couturier K, Taleux N, Servais S, Sibille B, Letexier D, Guigas B, Dubouchaud H, Leverve X, Favier R (2008) Liver mitochondrial properties from the obesity-resistant Lou/C rat. Int J Obes 32(4):629–638. https://doi.org/10.1038/sj.ijo.0803779

    Article  CAS  Google Scholar 

  13. Vial G, Chauvin MA, Bendridi N, Durand A, Meugnier E, Madec AM, Bernoud-Hubac N, Pais de Barros JP, Fontaine E, Acquaviva C, Hallakou-Bozec S, Bolze S, Vidal H, Rieusset J (2015) Imeglimin normalizes glucose tolerance and insulin sensitivity and improves mitochondrial function in liver of a high-fat, high-sucrose diet mice model. Diabetes 64(6):2254–2264. https://doi.org/10.2337/db14-1220

    Article  CAS  PubMed  Google Scholar 

  14. Guigas B, Bertrand L, Taleux N, Foretz M, Wiernsperger N, Vertommen D, Andreelli F, Viollet B, Hue L (2006) 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation. Diabetes 55(4):865–874

    Article  CAS  PubMed  Google Scholar 

  15. Guigas B, Taleux N, Foretz M, Detaille D, Andreelli F, Viollet B, Hue L (2007) AMP-activated protein kinase-independent inhibition of hepatic mitochondrial oxidative phosphorylation by AICA riboside. Biochem J 404(3):499–507. https://doi.org/10.1042/BJ20070105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stephenne X, Najimi M, Ngoc DK, Smets F, Hue L, Guigas B, Sokal EM (2007) Cryopreservation of human hepatocytes alters the mitochondrial respiratory chain complex 1. Cell Transplant 16(4):409–419

    Article  PubMed  Google Scholar 

  17. Taleux N, Guigas B, Dubouchaud H, Moreno M, Weitzel JM, Goglia F, Favier R, Leverve XM (2009) High expression of thyroid hormone receptors and mitochondrial glycerol-3-phosphate dehydrogenase in the liver is linked to enhanced fatty acid oxidation in Lou/C, a rat strain resistant to obesity. J Biol Chem 284(7):4308–4316. https://doi.org/10.1074/jbc.M806187200

    Article  CAS  PubMed  Google Scholar 

  18. Couturier K, Servais S, Koubi H, Sempore B, Cottet-Emard JM, Guigas B, Lavoie JM, Favier R (2004) Metabolic and hormonal responses to exercise in the anti-obese Lou/C rats. Int J Obes Relat Metab Disord 28(8):972–978. https://doi.org/10.1038/sj.ijo.0802717

    Article  CAS  PubMed  Google Scholar 

  19. Vial G, Dubouchaud H, Leverve XM (2010) Liver mitochondria and insulin resistance. Acta Biochim Pol 57(4):389–392

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Guigas’ group is supported by funding from the European Federation for the Study of Diabetes (EFSD/Lilly Research Grant Fellowship), the Société Francophone du Diabète (SFD), and the Dutch Organization for Scientific Research (ZonMW TOP Grant 91214131). To the memory of Dr. Roland Favier and Pr. Xavier Leverve.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Guigas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vial, G., Guigas, B. (2018). Assessing Mitochondrial Bioenergetics by Respirometry in Cells or Isolated Organelles. In: Neumann, D., Viollet, B. (eds) AMPK. Methods in Molecular Biology, vol 1732. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7598-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7598-3_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7597-6

  • Online ISBN: 978-1-4939-7598-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics