Skip to main content

Nerve Growth Factor-Induced Angiogenesis: 1. Endothelial Cell Tube Formation Assay

  • Protocol
  • First Online:
Neurotrophic Factors

Abstract

Nerve growth factor (NGF) is a neurotrophin promoting survival, proliferation, differentiation, and neuroprotection in the embryonal and adult nervous system. NGF also induces angiogenic effects in the cardiovascular system, which may be beneficial in engineering new blood vessels and for developing novel anti-angiogenesis therapies for cancer. Angiogenesis is a cellular process characterized by a number of events, including endothelial cell migration, invasion, and assembly into capillaries. In vitro endothelial tube formation assays are performed using primary human umbilical vein endothelial cells, human aortic endothelial cells, and other human or rodent primary endothelial cells isolated from the vasculature of both tumors and normal tissues. Immortalized endothelial cell lines are also used for these assays. When seeded onto Matrigel, these cells reorganize to create tubelike structure, which may be used as models for studying some aspects of in vitro angiogenesis. Image acquisition by light and fluorescence microscopy and/or quantification of fluorescently labeled cells can be carried out manually or digitally, using commercial software and automated image processing. Here we detail materials, procedure, assay conditions, and cell labeling for quantification of endothelial cell tube formation. This model can be applied to study cellular and molecular mechanisms by which NGF or other neurotrophins promote angiogenesis. This model may also be useful for the development of potential angiogenic and/or anti-angiogenic drugs targeting NGF receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Folkman J (1974) Proceedings: tumor angiogenesis factor. Cancer Res 34(8):2109–2113

    CAS  PubMed  Google Scholar 

  2. Munaron L, Fiorio Pla A (2009) Endothelial calcium machinery and angiogenesis: understanding physiology to interfere with pathology. Curr Med Chem 16(35):4691–4703

    Article  CAS  PubMed  Google Scholar 

  3. Lazarovici P, Marcinkiewicz C, Lelkes PI (2006) Cross talk between the cardiovascular and nervous systems: neurotrophic effects of vascular endothelial growth factor (VEGF) and angiogenic effects of nerve growth factor (NGF)-implications in drug development. Curr Pharm Des 12(21):2609–2622

    Article  CAS  PubMed  Google Scholar 

  4. Potente M, Carmeliet P (2017) The link between angiogenesis and endothelial metabolism. Annu Rev Physiol 79:43–66

    Article  CAS  PubMed  Google Scholar 

  5. Distler O, Neidhart M, Gay RE et al (2002) The molecular control of angiogenesis. Int Rev Immunol 21(1):33–49

    Article  CAS  PubMed  Google Scholar 

  6. Cantarella G, Lempereur L, Presta M et al (2002) Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo. FASEB J 16(10):1307–1309

    CAS  PubMed  Google Scholar 

  7. Dolle JP, Rezvan A, Allen FD et al (2005) Nerve growth factor-induced migration of endothelial cells. J Pharmacol Exp Ther 315(3):1220–1227. https://doi.org/10.1124/jpet.105.093252

    Article  CAS  PubMed  Google Scholar 

  8. Nico B, Mangieri D, Benagiano V et al (2008) Nerve growth factor as an angiogenic factor. Microvasc Res 75(2):135–141

    Article  CAS  PubMed  Google Scholar 

  9. Skaper SD (2017) Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology. 151(1):1–15. https://doi.org/10.1111/imm.12717

  10. Kermani P, Hempstead B (2007) Brain-derived neurotrophic factor: a newly described mediator of angiogenesis. Trends Cardiovasc Med 17(4):140–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim H, Li Q, Hempstead BL et al (2004) Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells. J Biol Chem 279(32):33538–33546

    Article  CAS  PubMed  Google Scholar 

  12. Benton G, Arnaoutova I, George J et al (2014) Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev 79-80:3–18

    Article  CAS  PubMed  Google Scholar 

  13. Arnaoutova I, George J, Kleinman HK et al (2009) The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis 12(3):267–274

    Article  PubMed  Google Scholar 

  14. Kleinman HK (2001) Preparation of basement membrane components from EHS tumors. Curr Protoc Cell Biol. https://doi.org/10.1002/0471143030.cb1002s00

  15. Adams D, Lelkes PI, Li M, et al (2015) Three-dimensional scaffolds for tissue engineering made by processing complex extracts of natural extracellular matrices. US Patent 8932620, 13 January 2015

    Google Scholar 

  16. Grant DS, Lelkes PI, Fukuda K et al (1991) Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro Cell Dev Biol 27A(4):327–336

    Article  CAS  PubMed  Google Scholar 

  17. Gamble J, Meyer G, Noack L et al (1999) B1 integrin activation inhibits in vitro tube formation: effects on cell migration, vacuole coalescence and lumen formation. Endothelium 7(1):23–34

    Article  CAS  PubMed  Google Scholar 

  18. Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15(5):378–386

    Article  CAS  PubMed  Google Scholar 

  19. Emanueli C, Salis MB, Pinna A et al (2002) Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation 106(17):2257–2262

    Article  CAS  PubMed  Google Scholar 

  20. Karatzas A, Katsanos K, Lilis I et al (2013) NGF promotes hemodynamic recovery in a rabbit hindlimb ischemic model through trkA- and VEGFR2-dependent pathways. J Cardiovasc Pharmacol 62(3):270–277

    Article  CAS  PubMed  Google Scholar 

  21. Lecht S, Arien-Zakay H, Wagenstein Y et al (2010) Transient signaling of Erk1/2, Akt and PLCgamma induced by nerve growth factor in brain capillary endothelial cells. Vasc Pharmacol 53(3–4):107–114

    Article  CAS  Google Scholar 

  22. Wild AM, Xuereb JH, Marks PV et al (1990) Computerized tomographic stereotaxy in the management of 200 consecutive intracranial mass lesions. Analysis of indications, benefits and outcome. Br J Neurosurg 4(5):407–415

    Article  CAS  PubMed  Google Scholar 

  23. Walsh EM, Kim R, Del Valle L et al (2012) Importance of interaction between nerve growth factor and alpha9beta1 integrin in glial tumor angiogenesis. Neuro-Oncology 14(7):890–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lecht S, Arien-Zakay H, Kohan M et al (2010) Angiostatic effects of K252a, a Trk inhibitor, in murine brain capillary endothelial cells. Mol Cell Biochem 339(1–2):201–213

    Article  CAS  PubMed  Google Scholar 

  25. Donovan D, Brown NJ, Bishop ET et al (2001) Comparison of three in vitro human ‘angiogenesis’ assays with capillaries formed in vivo. Angiogenesis 4(2):113–121

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Philip Lazarovici holds the Jacob Gitlin Chair in Physiology and is affiliated and supported by the David R Bloom Center for Pharmacy and the Adolph and Klara Brettler Medical Research Center at the Hebrew University of Jerusalem, Israel. Peter I. Lelkes is the Laura H. Carnell Professor of Bioengineering and Chair of the Department of Bioengineering, Temple University. Research reported in this publication was supported in part by a grant from the Temple University Moulder Center for Drug Discovery (CM and PIL) and a Research Bridge Funding Award (PIL) from the Temple University Office of the Vice President for Research Administration (OVPR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Lazarovici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lazarovici, P. et al. (2018). Nerve Growth Factor-Induced Angiogenesis: 1. Endothelial Cell Tube Formation Assay. In: Skaper, S. (eds) Neurotrophic Factors. Methods in Molecular Biology, vol 1727. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7571-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7571-6_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7570-9

  • Online ISBN: 978-1-4939-7571-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics