Skip to main content

Methods for Quantitative Analysis of Axonal Cargo Transport

  • Protocol
  • First Online:
Neurotrophic Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1727))

Abstract

Neurons rely on complex axonal transport mechanisms that mediate the intracellular dynamics of proteins, vesicles, and mitochondria along their high polarized structure. The fast improvement of live imaging techniques of fluorescent cargos allowed the identification of the diverse motion properties of different transported molecules. These properties arise as the result of molecular interactions between many players involved in axonal transport. Motor proteins, microtubule tracks, cargo association, and even axonal viscosity contribute to the proper axonal dynamics of different cargos. The unique properties in each cargo determine their distribution and location that is relevant to ensure neuronal cell activity and survival. This chapter provides a computational-based method for the generation of cargo trajectories and the identification of different motion regimes while cargo moves along axons. Then, the procedure to extract relevant parameters from active, diffusive, and confined motion is provided. These properties will allow a better comprehension of the nature and characteristics of cargo motion in living cells, therefore contributing to understanding the consequences of transport defects that arise during diseases of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Maday S, Twelvetrees A, Moughamian A, Holzbaur EF (2014) Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron 84:292–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ito K, Enomoto H (2016) Retrograde transport of neurotrophic factor signaling: implications in neuronal development and pathogenesis. J Biochem 160:77–85

    Article  CAS  PubMed  Google Scholar 

  3. De Vos KJ, Hafezparast M (2017) Neurobiology of axonal transport defects in motor neuron diseases: opportunities for translational research? Neurobiol Dis 105:283

    Article  PubMed  PubMed Central  Google Scholar 

  4. Encalada SE, Goldstein LSB (2014) Biophysical challenges to axonal transport: motor-cargo deficiencies and neurodegeneration. Annu Rev Biophys 43:141–169

    Article  CAS  PubMed  Google Scholar 

  5. Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68:610–638

    Article  CAS  PubMed  Google Scholar 

  6. Brady ST, Morfini GA (2017) Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol Dis 105:273–282

    Article  CAS  PubMed  Google Scholar 

  7. Lacovich V, Espindola SL, Alloatti M, Pozo Devoto V, Cromberg LE, Čarná ME, Forte G, Gallo J-M, Bruno L, Stokin GB, Avale ME, Falzone TL (2017) Tau isoforms imbalance impairs the axonal transport of the amyloid precursor protein in human neurons. J Neurosci 37:58–69

    Article  CAS  PubMed  Google Scholar 

  8. Pozo Devoto V, Dimopoulous N, Alloatti M, Cromberg L, Otero M, Saez T, Pardi B, Marin-Burgin A, Schinder A, Scassa M, Sevlever G, Falzone T (2017) α-Synuclein control of mitochondrial homeostasis in human-derived neurons is disrupted by mutations associated with Parkinson’s disease. Sci Rep 7(1):5042

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xu C-C, Denton KR, Wang Z-B, Zhang X, Li X-J (2016) Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy. Dis Model Mech 9:39–49

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mertens J, Stüber K, Poppe D, Doerr J, Ladewig J, Brüstle O, Koch P (2013) Embryonic stem cell-based modeling of tau pathology in human neurons. Am J Pathol 182:1769–1779

    Article  CAS  PubMed  Google Scholar 

  11. Encalada SE, Szpankowski L, Xia CH, Goldstein LS (2011) Stable kinesin and dynein assemblies drive the axonal transport of mammalian prion protein vesicles. Cell 144:551–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duff K, Knight H, Refolo LM, Sanders S, Yu X, Picciano M, Malester B, Hutton M, Adamson J, Goedert M, Burki K, Davies P (2000) Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes. Neurobiol Dis 7:87–98

    Article  CAS  PubMed  Google Scholar 

  13. Dixit RRJ, Goldman YE, Holzbaur EL (2008) Differential regulation of dynein and kinesin motor proteins by tau. Science 319:1086–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Magnani E, Fan J, Gasparini L, Golding M, Williams M, Schiavo G, Goedert M, Amos LA, Spillantini MG (2007) Interaction of tau protein with the dynactin complex. EMBO J 26:4546–4554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Perrot R, Julien J-P (2009) Real-time imaging reveals defects of fast axonal transport induced by disorganization of intermediate filaments. FASEB J 23:3213–3225

    Article  CAS  PubMed  Google Scholar 

  16. Otero MG, Alloatti M, Cromberg LE, Almenar-Queralt A, Encalada SE, Pozo Devoto VM, Bruno L, Goldstein LS, Falzone TL (2014) Fast axonal transport of the proteasome complex depends on membrane interaction and molecular motor function. J Cell Sci 127:1537–1549

    Article  CAS  PubMed  Google Scholar 

  17. Reis GF, Yang G, Szpankowski L, Weaver C, Shah SB, Robinson JT, Hays TS, Danuser G, Goldstein LS (2012) Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila. Mol Biol Cell 23:1700–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. In: Conn PM (ed) Methods in enzymology. Academic, New York, pp 183–200

    Google Scholar 

  19. Gu Y, Sun W, Wang G, Jeftinija K, Jeftinija S, Fang N (2012) Rotational dynamics of cargos at pauses during axonal transport. Nat Commun 3:1030. https://doi.org/10.1038/ncomms2037

    Article  PubMed  Google Scholar 

  20. Gal N, Lechtman-Goldstein D, Weihs D (2013) Particle tracking in living cells: a review of the mean square displacement method and beyond. Rheol Acta 52:425–443

    Article  CAS  Google Scholar 

  21. Fu MM, Holzbaur EL (2013) JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J Cell Biol 202:495–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leidel C, Longoria Rafael A, Gutierrez FM, Shubeita George T (2012) Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport. Biophys J 103:492–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas L. Falzone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alloatti, M., Bruno, L., Falzone, T.L. (2018). Methods for Quantitative Analysis of Axonal Cargo Transport. In: Skaper, S. (eds) Neurotrophic Factors. Methods in Molecular Biology, vol 1727. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7571-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7571-6_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7570-9

  • Online ISBN: 978-1-4939-7571-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics