Skip to main content
Log in

Particle tracking in living cells: a review of the mean square displacement method and beyond

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The focus of many particle tracking experiments in the last decade has been active systems, such as living cells. In active systems, the particles undergo simultaneous active and thermally driven transport. In contrast to thermally driven transport, particle motion driven by active processes cannot directly be correlated to the rheology of the probed region. The rheology in particle tracking experiments is typically obtained through the mean square displacements (MSD) of the trajectories. Hence, the MSD and its functional form remain the only basic tools to evaluate and compare living cells or other active systems. However, the mechano-structural characteristics of the intracellular environment and the mechanisms driving particle transport cannot be revealed by the MSD alone. Hence, approaches for advanced analysis of particle trajectories have been introduced recently. Here, we present a broad review of the extensive intracellular particle tracking experiments that have been carried out on a wide variety of cell types. Those works utilize the MSD, revealing similarities and differences relating to cell type and experimental setup. We also highlight several advanced trajectory-and displacement-based analysis methods and illustrate their capabilities using particle tracking data obtained from two cancer cell lines. We show that combining these analysis methods with the MSD can reveal additional information on intracellular structure and the existence and nature of active processes driving particle motion in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AbuHattum S, Weihs D (2013) Cell-based coordinate system for intracellular location-dependent particle tracking analysis. Comput Methods Biomech Biomed Eng. doi:10.1080/10255842.2012.761694

  • Andersen KH, Castiglione P, Mazzino A, Vulpiani A (2000) Simple stochastic models showing strong anomalous diffusion. Eur Phys J B 18:447–452

    Article  CAS  Google Scholar 

  • Arcizet D, Capito S, Gorelashvili M, Leonhardt C, Vollmer M, Youssef S, Rappl S, Heinrich D (2012) Contact-controlled amoeboid motility induces dynamic cell trapping in 3D-microstructured surfaces. Soft Matter 8:1473–1481. doi:10.1039/C1sm05615h

    Article  CAS  Google Scholar 

  • Arcizet D, Meier B, Sackmann E, Radler JO, Heinrich D (2008) Temporal analysis of active and passive transport in living cells. Phys Rev Lett 101. doi:10.1103/PhysRevLett.101.248103

  • Asnacios A, Desprat N, Guiroy A (2006) Microplates-based rheometer for a single living cell. Rev Sci Instrum 77. doi:10.1063/1.2202921

  • Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nat Mater 2:715–725. doi:10.1038/Nmat1001

    Article  CAS  Google Scholar 

  • Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75:2038–2049

    Article  CAS  Google Scholar 

  • Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500–504

    Article  CAS  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  • Brangwynne CP, Koenderink GH, MacKintosh FC, Weitz DA (2008) Nonequilibrium microtubule fluctuations in a model cytoskeleton. Phys Rev Lett 100. doi:10.1103/PhysRevLett.100.118104

  • Brangwynne CP, Koenderink GH, Weitz DA, MacKintosh FC (2009) Intracellular transport by active diffusion. Trends Cell Biol 19:423–427. doi:10.1016/j.tcb.2009.04.004

    Article  CAS  Google Scholar 

  • Bronstein I, Israel Y, Kepten E, Mai S, Shav-Tal Y, Barkai E, Garini Y (2009) Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys Rev Lett 103:018102. doi:10.1103/Physrevlett.103.018102

    Article  CAS  Google Scholar 

  • Brown R (1828) On the particles contained in the pollen of plants and on the general existence of active molecules in organic and inorganic bodies. Edinburgh New Phil J:358–371

    Google Scholar 

  • Burnecki K, Kepten E, Janczura J, Bronshtein I, Garini Y, Weron A (2012) Universal algorithm for identification of fractional Brownian motion. A case of Telomere subdiffusion. Biophys J 103:1839–1847. doi:10.1016/j.bpj.2012.09.040

    Article  CAS  Google Scholar 

  • Burov S, Jeon JH, Metzler R, Barkai E (2011) Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. Phys Chem Chem Phys 13:1800–1812. doi:10.1039/C0cp01879a

    Article  CAS  Google Scholar 

  • Bursac P, Lenormand G, Fabry B, Oliver M, Weitz DA, Viasnoff V, Butler JP, Fredberg JJ (2005) Cytoskeletal remodelling and slow dynamics in the living cell. Nat Mater 4:557–561. doi:10.1038/Nmat1404

    Article  CAS  Google Scholar 

  • Cameron AR, Frith JE, Cooper-White JJ (2011) The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32:5979–5993. doi:10.1016/j.biomaterials.2011.04.003

    CAS  Google Scholar 

  • Caspi A, Granek R, Elbaum M (2000) Enhanced diffusion in active intracellular transport. Phys Rev Lett 85:5655–5658

    Article  CAS  Google Scholar 

  • Caspi A, Granek R, Elbaum M (2002) Diffusion and directed motion in cellular transport. Phys Rev E Stat Nonlinear Soft Matter Phys 66:011916

    Article  CAS  Google Scholar 

  • Castiglione P, Mazzino A, Muratore-Ginanneschi P, Vulpiani A (1999) On strong anomalous diffusion. Physica D 134:75–93

    Article  Google Scholar 

  • Chaudhuri O, Parekh SH, Lam WA, Fletcher DA (2009) Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells. Nat Methods 6:383–U392. doi:10.1038/Nmeth.1320

    Article  CAS  Google Scholar 

  • Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81:2378–2388

    Article  CAS  Google Scholar 

  • Chen DTN, Wen Q, Janmey PA, Crocker JC, Yodh AG (2010) Rheology of soft materials. Annu Rev Cond Mat Phys 1:301–322. doi:10.1146/annurev-conmatphys-070909-104120

    CAS  Google Scholar 

  • Crick FHC, Hughes AFW (1950) The physical properties of cytoplasm—a study by means of the magnetic particle method .1. Experimental. Exp Cell Res 1:37–80. doi:10.1016/0014-4827(50)90048-6

    Article  Google Scholar 

  • Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310

    Article  CAS  Google Scholar 

  • Crocker JC, Hoffman BD (2007) Multiple-particle tracking and two-point microrheology in cells. Methods Cell Biol 83:141–178. doi:10.1016/S0091-679X(07)83007-X

    Article  CAS  Google Scholar 

  • Crocker JC, Valentine MT, Weeks ER, Gisler T, Kaplan PD, Yodh AG, Weitz DA (2000) Two-point microrheology of inhomogeneous soft materials. Phys Rev Lett 85:888–891

    Article  CAS  Google Scholar 

  • Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783. doi:10.1038/nnano.2007.388

    Article  CAS  Google Scholar 

  • Dangaria JH, Butler PJ (2007) Macrorheology and adaptive microrheology of endothelial cells subjected to fluid shear stress. Am J Physiol Cell Physiol 293:C1568–C1575. doi:10.1152/ajpcell.00193.2007

    Article  CAS  Google Scholar 

  • Daniels BR, Hale CM, Khatau SB, Kusuma S, Dobrowsky TM, Gerecht S, Wirtz D (2010) Differences in the microrheology of human embryonic stem cells and human induced pluripotent stem cells. Biophys J 99:3563–3570. doi:10.1016/j.bpj.2010.10.007

    Article  CAS  Google Scholar 

  • Dasgupta BR, Tee SY, Crocker JC, Frisken BJ, Weitz DA (2002) Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering. Phys Rev E 65. doi:10.1103/PhysRevE.65.051505

  • de Vries AHB, Krenn BE, van Driel R, Kanger JS (2005) Micro magnetic tweezers for nanomanipulation inside live cells. Biophys J 88:2137–2144. doi:10.1529/biophysj.104.052035

    Article  CAS  Google Scholar 

  • Discher D, Dong C, Fredberg JJ, Guilak F, Ingber D, Janmey P, Kamm RD, Schmid-Schonbein GW, Weinbaum S (2009) Biomechanics: Cell research and applications for the next decade. Ann Biomed Eng 37:847–859. doi:10.1007/s10439-009-9661-x

    Article  Google Scholar 

  • Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143. doi:10.1126/science.1116995

    Article  CAS  Google Scholar 

  • Einstein A (1905) On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat. Annalen der Physik (Leipzig) 17:549–560

    Article  CAS  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689. doi:10.1016/j.cell.2006.06.044

    Article  CAS  Google Scholar 

  • Evans E, Ritchie K, Merkel R (1995) Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys J 68:2580–2587

    Article  CAS  Google Scholar 

  • Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 87. doi:10.1103/PhysRevLett.87.148102

  • Ferrari R, Manfroi AJ, Young WR (2001) Strongly and weakly self-similar diffusion. Physica D 154:111–137

    Article  CAS  Google Scholar 

  • Fletcher DA, Mullins D (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492

    Article  CAS  Google Scholar 

  • Freundlich H, Seifriz W (1923) On the elasticity of soles and gels. Z Phys Chem-Stoch Ve 104:233–261

    CAS  Google Scholar 

  • Gal N, Weihs D (2010) Experimental evidence of strong anomalous diffusion in living cells. Phys Rev E 81:020903(R). doi:10.1103/PhysRevE.81.020903

    Article  CAS  Google Scholar 

  • Gal N, Weihs D (2012) Intracellular mechanics and activity of breast cancer cells correlate with metastatic potential. Cell Biochem Biophys 63:199–209. doi:10.1007/s12013-012-9356-z

    Article  CAS  Google Scholar 

  • Gallet F, Arcizet D, Bohec P, Richert A (2009) Power spectrum of out-of-equilibrium forces in living cells: amplitude and frequency dependence. Soft Matter 5:2947–2953. doi:10.1039/B901311c

    Article  CAS  Google Scholar 

  • Gittes F, Schnurr B, Olmsted PD, MacKintosh FC, Schmidt CF (1997) Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Phys Rev Lett 79:3286–3289

    Article  CAS  Google Scholar 

  • Golding I, Cox EC (2006) Physical nature of bacterial cytoplasm. Phys Rev Lett 96:098102. doi:10.1103/Physrevlett.96.098102

    Article  CAS  Google Scholar 

  • Granek R (1997) From semi-flexible polymers to membranes: Anomalous diffusion and reptation. J Phys Ii 7:1761–1788

    Article  CAS  Google Scholar 

  • Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698. doi:10.1529/biophysj104.045476

    Article  CAS  Google Scholar 

  • Guigas G, Kalla C, Weiss M (2007) Probing the nanoscale viscoelasticity of intracellular fluids in living cells. Biophys J 93:316–323. doi:10.1529/biophysj.106.099267

    Article  CAS  Google Scholar 

  • Guo Q, Park S, Ma HS (2012) Microfluidic micropipette aspiration for measuring the deformability of single cells. Lab Chip 12:2687–2695. doi:10.1039/C2lc40205j

    Article  CAS  Google Scholar 

  • Head DA, Mizuno D (2010) Nonlocal fluctuation correlations in active gels. Phys Rev E 81:041910

    Article  CAS  Google Scholar 

  • Heidemann SR, Wirtz D (2004) Towards a regional approach to cell mechanics. Trends Cell Biol 14:160–166. doi:10.1016/j.tcb.2004.02.003

    Article  CAS  Google Scholar 

  • Heilbronn A (1922) Eine neue Methode zur Bestimmung der Viskosität lebender Protoplasten

  • Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8:562–573. doi:10.1038/Nrm2197

    Article  CAS  Google Scholar 

  • Hiramoto Y (1969a) Mechanical properties of the protoplasm of the sea urchin egg. I. Unfertilized egg. Exp Cell Res 56:201–208

    Article  CAS  Google Scholar 

  • Hiramoto Y (1969b) Mechanical properties of the protoplasm of the sea urchin egg. II. Fertilized egg. Exp Cell Res 56:209–218

    Article  CAS  Google Scholar 

  • Hoffman BD, Massiera G, Van Citters KM, Crocker JC (2006) The consensus mechanics of cultured mammalian cells. Proc Natl Acad Sci USA 103:10259–10264. doi:10.1073/pnas.0510348103

    Article  CAS  Google Scholar 

  • Hou HW, Li QS, Lee GYH, Kumar AP, Ong CN, Lim CT (2009) Deformability study of breast cancer cells using microfluidics. Biomed Microdevices 11:557–564. doi:10.1007/s10544-008-9262-8

    Article  CAS  Google Scholar 

  • Huang S, Ingber DE (1999) The structural and mechanical complexity of cell-growth control. Nat Cell Biol 1:E131–E138

    Article  CAS  Google Scholar 

  • Indei T, Schieber JD, Cordoba A (2012a) Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology. Phys Rev E 85. doi:10.1103/PhysRevE.85.041504

  • Indei T, Schieber JD, Cordoba A, Pilyugina E (2012b) Treating inertia in passive microbead rheology. Phys Rev E 85. doi:10.1103/PhysRevE.85.021504

  • Janmey PA, Weitz DA (2004) Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci 29:364–370. doi:10.1016/j.tibs.2004.05.003

    Article  CAS  Google Scholar 

  • Jeon JH, Tejedor V, Burov S, Barkai E, Selhuber-Unkel C, Berg-Sorensen K, Oddershede L, Metzler R (2011) In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys Rev Lett 106:048103. doi:10.1103/Physrevlett.106.048103

    Article  CAS  Google Scholar 

  • Kahana A, Kenan G, Feingold M, Elbaum M, Granek R (2008) Active transport on disordered microtubule networks: The generalized random velocity model. Phys Rev E Stat Nonlinear Soft Matter Phys 78:051912

    Article  CAS  Google Scholar 

  • King M, Macklem PT (1977) Rheological properties of microliter quantities of normal mucus. J Appl Physiol 42:797–802

    CAS  Google Scholar 

  • Kulic IM, Brown AE, Kim H, Kural C, Blehm B, Selvin PR, Nelson PC, Gelfand VI (2008) The role of microtubule movement in bidirectional organelle transport. Proc Natl Acad Sci USA 105:10011–10016. doi:10.1073/pnas.0800031105

    Article  CAS  Google Scholar 

  • Lau AWC, Hoffman BD, Davies A, Crocker JC, Lubensky TC (2003) Microrheology, stress fluctuations, and active behavior of living cells. Phys Rev Lett 91. doi:10.1103/PhysRevLett.91.198101

  • Leijnse N, Jeon JH, Loft S, Metzler R, Oddershede LB (2012) Diffusion inside living human cells. Eur Phys J-Spec Top 204:75–84. doi:10.1140/epjst/e2012-01553-y

    Article  CAS  Google Scholar 

  • Leoncini X, Kuznetsov L, Zaslavsky GM (2004) Evidence of fractional transport in point vortex flow. Chaos Soliton Fract 19:259–273. doi:10.1016/S0960-0779(03)00040-7

    Article  Google Scholar 

  • Levine AJ, Lubensky TC (2000) One- and two-particle microrheology. Phys Rev Lett 85:1774–1777

    Article  CAS  Google Scholar 

  • Li YX, Vanapalli SA, Duits MHG (2009) Dynamics of ballistically injected latex particles in living human endothelial cells. Biorheology 46:309–321. doi:10.3233/Bir-2009-0542

    CAS  Google Scholar 

  • Lim CT, Zhou EH, Li A, Vedula SRK, Fu HX (2006) Experimental techniques for single cell and single molecule biomechanics. Mat Sci Eng C-Bio S 26:1278–1288. doi:10.1016/j.msec.2005.08.022

    Article  CAS  Google Scholar 

  • MacKintosh FC, Schmidt CF (1999) Microrheology. Curr Opin Colloid In 4:300–307. doi:10.1016/S1359-0294(99)90010-9

    Article  CAS  Google Scholar 

  • Mason TG (2000) Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. Rheol Acta 39:371–378

    Article  CAS  Google Scholar 

  • Mason TG, Dhople A, Wirtz D (1997a) Concentrated DNA rheology and microrheology. MRS Proc Stat Mech Phys Biol 463:153–158

    Article  CAS  Google Scholar 

  • Mason TG, Ganesan K, vanZanten JH, Wirtz D, Kuo SC (1997b) Particle tracking microrheology of complex fluids. Phys Rev Lett 79:3282–3285

    Article  CAS  Google Scholar 

  • Mason TG, Weitz DA (1995) Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett 74:1250–1253

    Article  CAS  Google Scholar 

  • Mizuno D, Tardin C, Schmidt CF, MacKintosh FC (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315:370–373. doi:10.1126/science.1134404

    Article  CAS  Google Scholar 

  • Morse DC (1998) Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 2. Linear response. Macromolecules 31:7044–7067

    Article  CAS  Google Scholar 

  • Nagle RB (1994) A review of intermediate filament biology and their use in pathological diagnosis. Mol Biol Rep 19:3–21

    Article  CAS  Google Scholar 

  • Panorchan P, Lee JSH, Kole TP, Tseng Y, Wirtz D (2006) Microrheology and ROCK signaling of human endothelial cells embedded in a 3D matrix. Biophys J 91:3499–3507. doi:10.1529/biophysj.106.084988

    Article  CAS  Google Scholar 

  • Pelling AE, Dawson DW, Carreon DM, Christiansen JJ, Shen RR, Teitell MA, Gimzewski JK (2007) Distinct contributions of microtubule subtypes to cell membrane shape and stability. Nanomed-Nanotechnol 3:43–52. doi:10.1016/j.nano.2006.11.006

    Article  CAS  Google Scholar 

  • Pikovsky AS (1991) Statistical properties of dynamically generated anomalous diffusion. Phys Rev A 43:3146–3148

    Article  Google Scholar 

  • Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326:1208–1212. doi:10.1126/science.1175862

    Article  CAS  Google Scholar 

  • Puig-de-Morales M, Grabulosa M, Alcaraz J, Mullol J, Maksym GN, Fredberg JJ, Navajas D (2001) Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation. J Appl Physiol 91:1152–1159

    CAS  Google Scholar 

  • Qi D, Hoelzle DJ, Rowat AC (2012) Probing single cells using flow in microfluidic devices. Eur Phys J-Spec Top 204:85–101. doi:10.1140/epjst/e2012-01554-x

    Article  CAS  Google Scholar 

  • Rahman A (1964) Correlations in the motion of atoms in liquid Argon. Phys Rev 136:A405–A411

    Article  Google Scholar 

  • Raupach C, Zitterbart DP, Mierke CT, Metzner C, Muller FA, Fabry B (2007) Stress fluctuations and motion of cytoskeletal-bound markers. Phys Rev E 76:011918. doi:10.1103/PhysRevE.76.011918

    Article  CAS  Google Scholar 

  • Rich JP, McKinley GH, Doyle PS (2011) Size dependence of microprobe dynamics during gelation of a discotic colloidal clay. J Rheol 55:273–299. doi:10.1122/1.3532979

    Article  CAS  Google Scholar 

  • Robert D, Nguyen TH, Gallet F, Wilhelm C (2010) In vivo determination of fluctuating forces during endosome trafficking using a combination of active and passive microrheology. PLoS ONE 5. doi:10.1371/journal.pone.0010046

  • Rogers SS, Waigh TA, Zhao XB, Lu JR (2007) Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight. Phys Biol 4:220–227. doi:10.1088/1478-3975/4/3/008

    Article  CAS  Google Scholar 

  • Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, Oxford

    Google Scholar 

  • Savin T, Doyle PS (2005) Static and dynamic errors in particle tracking microrheology. Biophys J 88:623–638. doi:10.1529/biophysj.104.042457

    Article  CAS  Google Scholar 

  • Saxton MJ (1993) Lateral diffusion in an archipelago—single-particle diffusion. Biophys J 64:1766–1780

    Article  CAS  Google Scholar 

  • Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399

    Article  CAS  Google Scholar 

  • Schwoebel ED, Ho TH, Moore MS (2002) The mechanism of inhibition of Ran-dependent nuclear transport by cellular ATP depletion. J Cell Biol 157:963–974. doi:10.1083/jcb.200111077

    Article  CAS  Google Scholar 

  • Snider J, Lin F, Zahedi N, Rodionov V, Yu CC, Gross SP (2004) Intracellular actin-based transport: how far you go depends on how often you switch. Proc Natl Acad Sci USA 101:13204–13209. doi:10.1073/pnas.0403092101

    Article  CAS  Google Scholar 

  • Squires TM, Brady JF (2005) A simple paradigm for active and nonlinear microrheology. Phys Fluids 17. doi:10.1063/1.1960607

  • Squires TM, Mason TG (2010) Fluid mechanics of microrheology. Annu Rev Fluid Mech 42:413–438. doi:10.1146/annurev-fluid-121108-145608

    Article  Google Scholar 

  • Stuhrmann B, Soares e Silva M, Depken M, MacKintosh FC, Koenderink GH (2012) Nonequilibrium fluctuations of a remodeling in vitro cytoskeleton. Phys Rev E 86:020901

    Article  CAS  Google Scholar 

  • Suh JH, Wirtz D, Hanes J (2004) Real-time intracellular transport of gene nanocarriers studied by multiple particle tracking. Biotechnol Prog 20:598–602. doi:10.1021/bp034251y

    Article  CAS  Google Scholar 

  • Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3:413–438. doi:10.1016/j.actbio.2007.04.002

    Article  Google Scholar 

  • Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M, Seufferlein T (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 1:15–30. doi:10.1016/j.actbio.2004.09.001

    Article  CAS  Google Scholar 

  • Sutherland W (1905) A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin. Philos Mag 9:781–785

    Article  CAS  Google Scholar 

  • Tanase M, Biais N, Sheetz M (2007) Magnetic tweezers in cell biology. Method Cell Biol 83:473–493. doi:10.1016/S0091-679x(07)83020-2

    Article  CAS  Google Scholar 

  • Thoumine O, Ott A, Cardoso O, Meister JJ (1999) Microplates: a new tool for manipulation and mechanical perturbation of individual cells. J Biochem Biophys Methods 39:47–62

    Article  CAS  Google Scholar 

  • Toyota T, Head DA, Schmidt CF, Mizuno D (2011) Non-Gaussian athermal fluctuations in active gels. Soft Matter 7:3234–3239. doi:10.1039/C0sm00925c

    Article  CAS  Google Scholar 

  • Tseng Y, Kole TP, Wirtz D (2002) Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophys J 83:3162–3176

    Article  CAS  Google Scholar 

  • Tseng Y, Lee JSH, Kole TP, Jiang I, Wirtz D (2004) Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking. J Cell Sci 117:2159–2167. doi:10.1242/jcs.01073

    Article  CAS  Google Scholar 

  • Umansky M, Weihs D (2012) Novel algorithm and MATLAB-based program for automated power law analysis of single particle, time-dependent mean-square displacement. Comput Phys Commun 183:1783–1792. doi:10.1016/j.cpc.2012.03.001

    Article  CAS  Google Scholar 

  • Valentine MT, Kaplan PD, Thota D, Crocker JC, Gisler T, Prud’homme RK, Beck M, Weitz DA (2001) Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking. Phys Rev E 64:061506. doi:10.1103/Physreve.64.061506

    Article  CAS  Google Scholar 

  • Valiron O, Caudron N, Job D (2001) Microtubule dynamics. Cell Mol Life Sci 58:2069–2084

    Article  CAS  Google Scholar 

  • Van Citters KM, Hoffman BD, Massiera G, Crocker JC (2006) The role of F-actin and myosin in epithelial cell rheology. Biophys J 91:3946–3956. doi:10.1529/biophysj.106.091264

    Article  CAS  Google Scholar 

  • Van Hove L (1954) Correlations in space and time and born approximation scattering in systems of interacting particles. Physical Review 95:249–262

    Article  CAS  Google Scholar 

  • Van Vliet KJ, Bao G, Suresh S (2003) The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Mater 51:5881–5905. doi:10.1016/j.actamat.2003.09.001

    Article  CAS  Google Scholar 

  • Weber SC, Spakowitz AJ, Theriot JA (2010) Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys Rev Lett 104:238102. doi:10.1103/Physrevlett.104.238102

    Article  CAS  Google Scholar 

  • Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA (2000) Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287:627–631

    Article  CAS  Google Scholar 

  • Weihs D, Gilad D, Seon M, Cohen I (2012) Image-based algorithm for analysis of transient trapping in single-particle trajectories. Microfluid Nanofluid 12:337–344. doi:10.1007/s10404-011-0877-3

    Article  Google Scholar 

  • Weihs D, Mason TG, Teitell MA (2006) Bio-microrheology: a frontier in microrheology. Biophys J 91:4296–4305. doi:10.1529/biophysj.106.081109

    Article  CAS  Google Scholar 

  • Weihs D, Mason TG, Teitell MA (2007a) Effects of cytoskeletal disruption on transport, structure, and rheology within mammalian cells. Phys Fluids 19. doi:10.1063/1.2795130

  • Weihs D, Teitell MA, Mason TG (2007b) Simulations of complex particle transport in heterogeneous active liquids. Microfluid Nanofluid 3:227–237. doi:10.1007/s10404-006-0117-4

    Article  CAS  Google Scholar 

  • Weiss M, Elsner M, Kartberg F, Nilsson T (2004) Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys J 87:3518–3524. doi:10.1529/biophysj.104.044263

    Article  CAS  Google Scholar 

  • Wilhelm C (2008) Out-of-equilibrium microrheology inside living cells. Phys Rev Lett 101:028101. doi:10.1103/Physrevlett.101.028101

    Article  CAS  Google Scholar 

  • Willenbacher N, Oelschlaeger C, Schopferer M, Fischer P, Cardinaux F, Scheffold F (2007) Broad bandwidth optical and mechanical rheometry of wormlike micelle solutions. Phys Rev Lett 99. doi:10.1103/Physrevlett.99.068302

  • Xu JY, Viasnoff V, Wirtz D (1998) Compliance of actin filament networks measured by particle-tracking microrheology and diffusing wave spectroscopy. Rheol Acta 37:387–398

    Article  CAS  Google Scholar 

  • Yagi K (1961) The mechanical and colloidal properties of Amoeba protoplasm and their relations to the mechanism of amoeboid movement. Comp Biochem Physiol 3:73–91

    Article  CAS  Google Scholar 

  • Yamada S, Wirtz D, Kuo SC (2000) Mechanics of living cells measured by laser tracking microrheology. Biophys J 78:1736–1747

    Article  CAS  Google Scholar 

  • Yizraeli ML, Weihs D (2011) Time-dependent micromechanical responses of breast cancer cells and adjacent fibroblasts to electric treatment. Cell Biochem Biophys 61:605–618. doi:10.1007/s12013-011-9244-y

    Article  CAS  Google Scholar 

  • Zemel A, Rehfeldt F, Brown AEX, Discher DE, Safran SA (2010) Optimal matrix rigidity for stress-fibre polarization in stem cells. Nat Phys 6:468–473. doi:10.1038/Nphys1613

    Article  CAS  Google Scholar 

  • Zhang H, Liu KK (2008) Optical tweezers for single cells. J R Soc Interface 5:671–690. doi:10.1098/rsif.2008.0052

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Rony Granek for the stimulating discussions. The work was partially funded by the Israeli Ministry of Science and Technology and the Eliyahu Pen Fund for Scientific and Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daphne Weihs.

Additional information

Special issue devoted to novel trends in rheology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gal, N., Lechtman-Goldstein, D. & Weihs, D. Particle tracking in living cells: a review of the mean square displacement method and beyond. Rheol Acta 52, 425–443 (2013). https://doi.org/10.1007/s00397-013-0694-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-013-0694-6

Keywords

Navigation