Skip to main content

In Vivo Loose-Patch-Juxtacellular Labeling of Cerebellar Neurons in Mice

  • Protocol
  • First Online:
Extracellular Recording Approaches

Part of the book series: Neuromethods ((NM,volume 134))

Abstract

Extracellular recording techniques provide a critical means for measuring neuronal function in vivo. For many experiments, metal electrodes yield spike data that is clean enough for resolving spike waveforms to identify neurons. However, even though some neurons can be distinguished based on their spiking features, it is still not possible to definitively identify most neurons only by their activity. To circumvent this problem, Pinault (J Neurosci Methods 65:113–136, 1996) developed the juxtacellular recording-labeling method to anatomically identify individually recorded neurons. His method utilized glass electrodes to isolate and record single units in vivo. The use of pulled capillary pipettes for recording was key for the success of the method since it allowed him to load the electrode with a tracer that could be delivered across the cell membrane and into the cell. Tracing is achieved by placing the electrode in very close proximity to a cell and then, by delivering pulses of current, pores in the membrane transiently open to allow the tracer to enter. Later studies expanded on the precision of the method by making a loose patch onto the cell before filling it. However, while the juxtacellular method has opened new avenues for relating structure to function at single-cell resolution, the approach remains a challenge to execute because there are several critical steps that are difficult to perform. Here, we provide a step-by-step description for how to perform loose-patch-juxtacellular labeling in vivo in mice. Using the cerebellum as a model system, we outline how to fill Purkinje cells with Neurobiotin. The procedure can be adapted to labeling neurons in any part of the brain, and we discuss its value for unambiguously identifying cells in mutant mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Pinault D (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J Neurosci Methods 65(2):113–136

    Article  CAS  PubMed  Google Scholar 

  2. Pinault D, Deschênes M (1998) Anatomical evidence for a mechanism of lateral inhibition in the rat thalamus. Eur J Neurosci 10(11):3462–3469

    Article  CAS  PubMed  Google Scholar 

  3. Pinault D, Deschênes M (1998) Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: a three-dimensional, graphic, and morphometric analysis. J Comp Neurol 391(2):180–203

    Article  CAS  PubMed  Google Scholar 

  4. Pinault D, Vergnes M, Marescaux C (2001) Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons. Neuroscience 105(1):181–201

    Article  CAS  PubMed  Google Scholar 

  5. Pinault D (2003) Cellular interactions in the rat somatosensory thalamocortical system during normal and epileptic 5-9 Hz oscillations. J Physiol 552(3):881–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zheng TW, O’Brien TJ, Morris MJ et al (2012) Rhythmic neuronal activity in S2 somatosensory and insular cortices contribute to the initiation of absence-related spike-and-wave discharges. Epilepsia 53(11):1948–1958

    Article  PubMed  Google Scholar 

  7. Joshi S, Hawken MJ (2006) Loose-patch-juxtacellular recording in vivo—a method for functional characterization and labeling of neurons in macaque V1. J Neurosci Methods 156(1–2):37–49

    Article  CAS  PubMed  Google Scholar 

  8. Simpson JI, Hulscher HC, Sabel-Goedknegt E et al (2005) Between in and out: linking morphology and physiology of cerebellar cortical interneurons. Prog Brain Res 148:329–340

    Article  CAS  PubMed  Google Scholar 

  9. Holtzman T, Rajapaksa T, Mostofi A et al (2006) Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs. J Physiol 574(2):491–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barmack NH, Yakhnitsa V (2008) Functions of interneurons in mouse cerebellum. J Neurosci 28(5):1140–1152

    Article  CAS  PubMed  Google Scholar 

  11. Barmack NH, Yakhnitsa V (2011) Microlesions of the inferior olive reduce vestibular modulation of Purkinje cell complex and simple spikes in mouse cerebellum. J Neurosci 31(27):9824–9835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruigrok TJH, Hensbroek RA, Simpson JI (2011) Spontaneous activity signatures of morphologically identified interneurons in the vestibulocerebellum. J Neurosci 31(2):712–724

    Article  CAS  PubMed  Google Scholar 

  13. Barmack NH, Yakhnitsa V (2013) Modulated discharge of Purkinje and stellate cells persists after unilateral loss of vestibular primary afferent mossy fibers in mice. J Neurophysiol 110(10):2257–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hensbroek RA, Belton T, van Beugen BJ et al (2014) Identifying Purkinje cells using only their spontaneous simple spike activity. J Neurosci Methods 232:173–180

    Article  PubMed  Google Scholar 

  15. Eccles JC, Llinás R, Sasaki K (1966) The action of antidromic impulses on the cerebellar Purkinje cells. J Physiol 182(2):316–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eccles JC, Llinás R, Sasaki K (1966) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol 182(2):268–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eccles JC, Llinás R, Sasaki K (1966) Intracellularly recorded responses of the cerebellar Purkinje cells. Exp Brain Res 1(2):161–183

    Article  CAS  PubMed  Google Scholar 

  18. Eccles JC, Sasaki K, Strata P (1966) The profiles of physiological events produced by a parallel fibre volley in the cerebellar cortex. Exp Brain Res 2(1):18–34

    Article  CAS  PubMed  Google Scholar 

  19. Eccles JC, Llinás R, Sasaki K et al (1966) Interaction experiments on the responses evoked in Purkinje cells by climbing fibres. J Physiol 182(2):297–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eccles JC, Llinás R, Sasaki K (1966) Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum. Exp Brain Res 1(1):17–39

    CAS  PubMed  Google Scholar 

  21. Llinás R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol 305:171–195

    Article  PubMed  PubMed Central  Google Scholar 

  22. Llinás R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol 305:197–213

    Article  PubMed  PubMed Central  Google Scholar 

  23. Desclin JC, Colin F, Manil J (1981) Morphological correlates of cerebellar Purkinje cell activity. Prog Clin Biol Res 59A:269–277

    CAS  PubMed  Google Scholar 

  24. Lang EJ, Sugihara I, Welsh JP et al (1999) Patterns of spontaneous purkinje cell complex spike activity in the awake rat. J Neurosci 19(7):2728–2739

    CAS  PubMed  Google Scholar 

  25. Cerminara NL, Rawson JA (2004) Evidence that climbing fibers control an intrinsic spike generator in cerebellar Purkinje cells. J Neurosci 24(19):4510–4517

    Article  CAS  PubMed  Google Scholar 

  26. Davie JT, Clark BA, Hausser M (2008) The origin of the complex spike in cerebellar Purkinje cells. J Neurosci 28(30):7599–7609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmolesky MT, Weber JT, De Zeeuw CI et al (2002) The making of a complex spike: ionic composition and plasticity. Ann N Y Acad Sci 978:359–390

    Article  PubMed  Google Scholar 

  28. Yang Y, Lisberger SG (2014) Purkinje-cell plasticity and cerebellar motor learning are graded by complex-spike duration. Nature 510(7506):529–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. White JJ, Arancillo M, Stay TL et al (2014) Cerebellar zonal patterning relies on Purkinje cell neurotransmission. J Neurosci 34(24):8231–8245

    Article  PubMed  PubMed Central  Google Scholar 

  30. Arancillo M, White JJ, Lin T et al (2015) In vivo analysis of Purkinje cell firing properties during postnatal mouse development. J Neurophysiol 113(2):578–591

    Article  PubMed  Google Scholar 

  31. Hewitt AL, Popa LS, Ebner TJ (2015) Changes in Purkinje cell simple spike encoding of reach kinematics during adaption to a mechanical perturbation. J Neurosci 35(3):1106–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohmae S, Medina JF (2015) Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nat Neurosci 18(12):1798–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cerminara NL, Lang EJ, Sillitoe RV et al (2015) Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci 16(2):79–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Herndon RM (1963) The fine structure of the Purkinje cell. J Cell Biol 18(1):167–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ramón y Cajal S. (1909) Histologie du système nerveux de l’homme. Paris

    Google Scholar 

  36. Reeber SL, Otis TS, Sillitoe RV (2013) New roles for the cerebellum in health and disease. Front Syst Neurosci 7:83

    Article  PubMed  PubMed Central  Google Scholar 

  37. White JJ, Lin T, Brown AM et al (2016) An optimized surgical approach for obtaining stable extracellular single-unit recordings from the cerebellum of head-fixed behaving mice. J Neurosci Methods 262:21–31

    Article  PubMed  PubMed Central  Google Scholar 

  38. Armstrong DM, Rawson JA (1979) Responses of neurones in nucleus interpositus of the cerebellum to cutaneous nerve volleys in the awake cat. J Physiol 289:403–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Armstrong DM, Rawson JA (1979) Activity patterns of cerebellar cortical neurones and climbing fibre afferents in the awake cat. J Physiol 289:425–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thach WT (1967) Somatosensory receptive fields of single units in cat cerebellar cortex. J Neurophysiol 30(4):675–696

    PubMed  Google Scholar 

  41. Wise AK, Cerminara NL, Marple-Horvat DE et al (2010) Mechanisms of synchronous activity in cerebellar Purkinje cells. J Physiol 588(Pt 13):2373–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shin S-L, Hoebeek FE, Schonewille M et al (2007) Regular patterns in cerebellar Purkinje cell simple spike trains. PLoS One 2(5):e485

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bosman LWJ, Koekkoek SKE, Shapiro J et al (2010) Encoding of whisker input by cerebellar Purkinje cells. J Physiol 588(Pt 19):3757–3783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. de Solages C, Szapiro G, Brunel N et al (2008) High-frequency organization and synchrony of activity in the purkinje cell layer of the cerebellum. Neuron 58(5):775–788

    Article  PubMed  Google Scholar 

  45. White JJ, Arancillo M, King A et al (2016) Pathogenesis of severe ataxia and tremor without the typical signs of neurodegeneration. Neurobiol Dis 86:86–98

    Article  CAS  PubMed  Google Scholar 

  46. White JJ, Sillitoe RV (2017) Genetic silencing of olivocerebellar synapses causes dystonia-like behavior in mice. Nat Commun 8:14912. https://doi.org/10.1038/ncomms14912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chaumont J, Guyon N, Valera AM et al (2013) Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge. Proc Natl Acad Sci U S A 110(40):16223–16228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheron G, Sausbier M, Sausbier U et al (2009) BK channels control cerebellar Purkinje and Golgi cell rhythmicity in vivo. PLoS One 4(11):e7991

    Article  PubMed  PubMed Central  Google Scholar 

  49. Goossens HH, Hoebeek FE, Van Alphen AM et al (2004) Simple spike and complex spike activity of floccular Purkinje cells during the optokinetic reflex in mice lacking cerebellar long-term depression. Eur J Neurosci 19(3):687–697

    Article  CAS  PubMed  Google Scholar 

  50. Witter L, Canto CB, Hoogland TM et al (2013) Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation. Front Neural Circuits 7:133

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhou H, Lin Z, Voges K et al (2014) Cerebellar modules operate at different frequencies. elife 3:e02536

    PubMed  PubMed Central  Google Scholar 

  52. Person AL, Raman IM (2012) Synchrony and neural coding in cerebellar circuits. Front Neural Circuits 6:97

    Article  PubMed  PubMed Central  Google Scholar 

  53. Badura A, Schonewille M, Voges K et al (2013) Climbing fiber input shapes reciprocity of Purkinje cell firing. Neuron 78(4):700–713

    Article  CAS  PubMed  Google Scholar 

  54. Medina JF, Lisberger SG (2008) Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat Neurosci 11(10):1185–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Popa L.S., Hewitt A.L., Ebner T.J. (2013) Purkinje cell simple spike discharge encodes error signals consistent with a forward internal model. Cerebellum 12(3), 331–3

    Google Scholar 

  56. Xiao J, Cerminara NL, Kotsurovskyy Y et al (2014) Systematic regional variations in Purkinje cell spiking patterns. PLoS One 9(8):e105633

    Article  PubMed  PubMed Central  Google Scholar 

  57. Brochu G, Maler L, Hawkes R (1990) Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol 291(4):538–552

    Article  CAS  PubMed  Google Scholar 

  58. Ahn AH, Dziennis S, Hawkes R et al (1994) The cloning of zebrin II reveals its identity with aldolase C. Development 120(8):2081–2090

    CAS  PubMed  Google Scholar 

  59. Sillitoe RV, Hawkes R (2002) Whole-mount immunohistochemistry: a high-throughput screen for patterning defects in the mouse cerebellum. J Histochem Cytochem 50(2):235–244

    Google Scholar 

  60. Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10(9):670–681

    Article  CAS  PubMed  Google Scholar 

  61. Bevan MD, Booth PA, Eaton SA et al (1998) Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. J Neurosci 18(22):9438–9452

    CAS  PubMed  Google Scholar 

  62. Sadek AR, Magill PJ, Bolam JP (2007) A single-cell analysis of intrinsic connectivity in the rat globus pallidus. J Neurosci 27(24):6352–6362

    Article  CAS  PubMed  Google Scholar 

  63. Stretton AO, Kravitz EA (1968) Neuronal geometry: determination with a technique of intracellular dye injection. Science 162(3849):132–134

    Article  CAS  PubMed  Google Scholar 

  64. Wilson C.J., Sachdev R.N.S. (2004) Intracellular and juxtacellular staining with biocytin. Curr Protoc Neurosci Chapter 1, Unit 1.12

    Google Scholar 

  65. Duque A, Zaborszky L (2006) Juxtacellular labeling of individual neurons in vivo: from electrophysiology to synaptology. In: Neuroanatomical tract-tracing 3. Springer US, New York, pp 197–236

    Chapter  Google Scholar 

  66. Hassani OK, Henny P, Lee MG et al (2010) GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep. Eur J Neurosci 32(3):448–457

    Article  PubMed  PubMed Central  Google Scholar 

  67. Inokawa H, Yamada H, Matsumoto N et al (2010) Juxtacellular labeling of tonically active neurons and phasically active neurons in the rat striatum. Neuroscience 168(2):395–404

    Article  CAS  PubMed  Google Scholar 

  68. Hartung H, Tan SKH, Steinbusch HMW et al (2011) High-frequency stimulation of the subthalamic nucleus inhibits the firing of juxtacellular labelled 5-HT-containing neurons. Neuroscience 186:135–145

    Article  CAS  PubMed  Google Scholar 

  69. Herfst L, Burgalossi A, Haskic K et al (2012) Friction-based stabilization of juxtacellular recordings in freely moving rats. J Neurophysiol 108(2):697–707

    Article  PubMed  PubMed Central  Google Scholar 

  70. Varga C, Golshani P, Soltesz I (2012) Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice. Proc Natl Acad Sci U S A 109(40):E2726–E2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun Y-N, Li L-B, Zhang Q-J et al (2013) The response of juxtacellular labeled GABA interneurons in the basolateral amygdaloid nucleus anterior part to 5-HT2A/2C receptor activation is decreased in rats with 6-hydroxydopamine lesions. Neuropharmacology 73:404–414

    Article  CAS  PubMed  Google Scholar 

  72. Daniel J, Polder HR, Lessmann V et al (2013) Single-cell juxtacellular transfection and recording technique. Pflugers Arch 465(11):1637–1649

    Article  CAS  PubMed  Google Scholar 

  73. Tang Q, Ebbesen CL, Sanguinetti-Scheck JI et al (2015) Anatomical organization and spatiotemporal firing patterns of layer 3 neurons in the rat medial entorhinal cortex. J Neurosci 35(36):12346–12354

    Article  CAS  PubMed  Google Scholar 

  74. Dempsey B, Turner AJ, Le S et al (2015) Recording, labeling, and transfection of single neurons in deep brain structures. Phys Rep 3(1):e12246–e12246

    Article  Google Scholar 

  75. Tang Q, Brecht M, Burgalossi A (2014) Juxtacellular recording and morphological identification of single neurons in freely moving rats. Nat Protoc 9(10):2369–2381

    Article  CAS  PubMed  Google Scholar 

  76. Cazakoff BN, Lau BYB, Crump KL et al (2014) Broadly tuned and respiration-independent inhibition in the olfactory bulb of awake mice. Nat Neurosci 17(4):569–576

    Article  CAS  PubMed  Google Scholar 

  77. Doron G, von Heimendahl M, Schlattmann P et al (2014) Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation. Neuron 81(3):653–663

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from Baylor College of Medicine (BCM) and Texas Children’s Hospital. R.V.S. received support from the Bachmann-Strauss Dystonia and Parkinson Foundation, Inc., the Caroline Wiess Law Fund for Research in Molecular Medicine, BCM IDDRC U54HD083092, the National Center for Research Resources C06RR029965, and the National Institutes of Neurological Disorders and Stroke (NINDS) R01NS089664. A.M.B. received support from NINDS F31NS101891, and J.J.W. received support from NINDS F31NS092264. The BCM IDDRC Neuropathology Sub-Core performed a portion of the tissue staining (the BCM IDDRC Neurovisualization Core is supported by U54HD083092). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center For Research Resources or the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy V. Sillitoe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brown, A.M., White, J.J., Zhou, J., Jefferson, T., Lin, T., Sillitoe, R.V. (2018). In Vivo Loose-Patch-Juxtacellular Labeling of Cerebellar Neurons in Mice. In: Sillitoe, R. (eds) Extracellular Recording Approaches. Neuromethods, vol 134. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7549-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7549-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7548-8

  • Online ISBN: 978-1-4939-7549-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics