Skip to main content

Designing Optimized Production Hosts by Metabolic Modeling

  • Protocol
  • First Online:
Metabolic Network Reconstruction and Modeling

Abstract

Many of the complex and expensive production steps in the chemical industry are readily available in living cells. In order to overcome the metabolic limits of these cells, the optimal genetic intervention strategies can be computed by the use of metabolic modeling. Elementary flux mode analysis (EFMA) is an ideal tool for this task, as it does not require defining a cellular objective function. We present two EFMA-based methods to optimize production hosts: (1) the standard approach that can only be used for small and medium scale metabolic networks and (2) the advanced dual system approach that can be utilized to directly compute intervention strategies in a genome-scale metabolic model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lewis NE, Nagarajan H, Palsson BØ (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10:291–305. https://doi.org/10.1038/nrmicro2737

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248. https://doi.org/10.1038/nbt.1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klamt S, Gilles ED (2003) Minimal cut sets in biochemical reaction networks. Bioinformatics 20:226–234. https://doi.org/10.1093/bioinformatics/btg395

    Article  Google Scholar 

  4. Hädicke O, Klamt S (2011) Computing complex metabolic intervention strategies using contrained minimal cut sets. Metab Eng 13:204–213. https://doi.org/10.1016/j.ymben.2010.12.004

    Article  PubMed  Google Scholar 

  5. Ballerstein K, von Kamp A, Klamt S, Haus UU (2012) Minimal cut sets in a metabolic network are elementary modes in a dual network. Bioinformatics 28(3):381–387. https://doi.org/10.1093/bioinformatics/btr674

    Article  CAS  PubMed  Google Scholar 

  6. von Kamp A, Klamt S (2014) Enumeration of smallest intervention strategies in genome-scale metabolic networks. PLoS Comput Biol 10:e1003378. https://doi.org/10.1371/journal.pcbi.1003378

    Article  Google Scholar 

  7. Zanghellini J, Ruckerbauer DE, Hanscho M, Jungreuthmayer C (2013) Elementary flux modes in a nutshell: properties, calculation and applications. Biotechnol J 8:1009–1016. https://doi.org/10.1002/biot.201200269

    Article  CAS  PubMed  Google Scholar 

  8. Online SBML Validator (2016) http://sbml.org/validator/. Accessed 17 June 2016

  9. BiGG Models (2016) http://bigg.ucsd.edu/models/iAF1260. Accessed 17 June 2016

  10. Acuña V, Chierichetti F, Lacroix V, Marchetti-Spaccamela A, Sagot MF, Stougie L (2009) Modes and cuts in metabolic networks: complexity and algorithms. Biosystems 95:51–60. https://doi.org/10.1016/j.biosystems.2008.06.015

    Article  PubMed  Google Scholar 

  11. Jungreuthmayer C, Ruckerbauer DE, Gerstl MP, Hanscho M, Zanghellini J (2015) Avoiding the enumeration of infeasible elementary flux modes by including transcriptional regulatory rules in the enumeration process saves computational costs. PLoS One 10:e0129840. https://doi.org/10.1371/journal.pone.0129840

    Article  PubMed  PubMed Central  Google Scholar 

  12. Erdrich P, Steuer R, Klamt S (2015) An algorithm for the reduction of genome-scale metabolic network models to meaningful core models. BMC Syst Biol 9:48. https://doi.org/10.1186/s12918-015-0191-x

    Article  PubMed  PubMed Central  Google Scholar 

  13. Klamt S, Saez-Rodriguez J, Gilles ED (2007) Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst Biol 1:2. https://doi.org/10.1186/1752-0509-1-2

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gagneur J, Klamt S (2004) Computation of elementary modes: a unifying framework and the new binary approach. BMC Bioinformatics 5:175. https://doi.org/10.1186/1471-2105-5-175

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jungreuthmayer C, Nair G, Klamt S, Zanghellini J (2013) Comparison and improvement of algorithms for computing minimal cut sets. BMC Bioinformatics 14:318. https://doi.org/10.1186/1471-2105-14-318

    Article  PubMed  PubMed Central  Google Scholar 

  16. Klamt S, Stelling J (2002) Combinatorial complexity of pathway analysis in metabolic networks. Mol Biol Rep 29:233–236. https://doi.org/10.1023/A:1020390132244

    Article  CAS  PubMed  Google Scholar 

  17. Terzer M, Stelling J (2008) Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 24:2229–2235. https://doi.org/10.1093/bioinformatics/btn401

    Article  CAS  PubMed  Google Scholar 

  18. Hunt KA, Folsom JP, Taffs RL, Carlson RP (2014) Complete enumeration of elementary flux modes through scalable demand-based subnetwork definition. Bioinformatics 30:1569–1578. https://doi.org/10.1093/bioinformatics/btu021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gerstl MP, Ruckerbauer DE, Mattanovich D, Jungreuthmayer C, Zanghellini J (2015) Metabolomics integrated elementary flux mode analysis in large metabolic networks. Sci Rep 5:8930. https://doi.org/10.1038/srep08930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gerstl MP, Jungreuthmayer C, Zanghellini J (2015) tEFMA: computing thermodynamically feasible elementary flux modes in metabolic network. Bioinformatics 31:2232–2234. https://doi.org/10.1093/bioinformatics/btv111

    Article  CAS  PubMed  Google Scholar 

  21. van Klinken J, Willems van Dijk DK (2016) FluxModeCalculator: an efficient tool for large-scale flux mode computation. Bioinformatics 32:1265–1266. https://doi.org/10.1093/bioinformatics/btv742

    Article  PubMed  Google Scholar 

  22. von Kamp A, Schuster S (2006) Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics 22:1930–1931. https://doi.org/10.1093/bioinformatics/btl267

    Article  Google Scholar 

  23. Jungreuthmayer C, Ruckerbauer DE, Zanghellini J (2013) regEfmtool: speeding up elementary flux mode calculation using transcriptional regulatory rules in the form of three-state logic. Biosystems 113:37–39. https://doi.org/10.1016/j.biosystems.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  24. Jungreuthmayer C, Zanghellini J (2012) Designing optimal cell factories: integer programming couples elementary mode analysis with regulation. BMC Syst Biol 16:103. https://doi.org/10.1186/1752-0509-6-103.

    Article  Google Scholar 

  25. Jungreuthmayer C, Beurton-Aimar M, Zanghellini J (2013) Fast computation of minimal cut sets in metabolic networks with a Berge algorithm that utilizes binary bit pattern trees. IEEE/ACM Trans Comput Biol Bioinform 10:1329–1333. https://doi.org/10.1109/TCBB.2013.116

    Article  PubMed  Google Scholar 

  26. Berge C (1989) Combinatorics of finite sets, Hypergraphs, vol 45. Elsevier, North Holland

    Google Scholar 

  27. Feist AM, Zielinski DC, Orth JD, Schellenberger J, Herrgard MJ, Palsson BØ (2010) Model-driven evaluation of the production potential for growth-coupled products of escherichia coli. Metab Eng 12:173–186. https://doi.org/10.1016/j.ymben.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  28. Ruckerbauer DE, Jungreuthmayer C, Zanghellini J (2014) Design of optimally constructed metabolic networks of minimal functionality. PLoS One 9:e92583. https://doi.org/10.1371/journal.pone.0092583

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nair G, Jungreuthmayer C, Hanscho M, Zanghellini J (2015) Designing minimal microbial strains of desired functionality using a genetic algorithm. Algorithms Mol Biol 10:29. https://doi.org/10.1186/s13015-015-0060-6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Farkas J (1902) Theorie der einfachen Ungleichungen. J Reine Angew Math 124:1–27

    Google Scholar 

  31. de Figueiredo LF, Podhorski A, Rubio A, Kaleta C, Beasley JE, Schuster S, Planes FJ (2009) Computing the shortest elementary flux modes in genome-scale metabolic networks. Bioinformatics 25:3158–3165. https://doi.org/10.1093/bioinformatics/btp564

    Article  PubMed  Google Scholar 

  32. Fukuda K, Prodon A (1996) Double description method revisited. Comb Comput Sci 1120:91–111

    Google Scholar 

  33. Mahadevan R, Schilling C (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic model. Metab Eng 5:264–276. https://doi.org/10.1016/j.ymben.2003.09.002

    Article  CAS  PubMed  Google Scholar 

  34. Behre J, Wilhelm T, von Kamp A, Ruppin E, Schuster S (2008) Structural robustness of metabolic networks with respect to multiple knockouts. J Theor Biol 252:433–441. https://doi.org/10.1016/j.jtbi.2007.09.043

    Article  CAS  PubMed  Google Scholar 

  35. Gerstl MP, Klamt S, Jungreuthmayer C, Zanghellini J (2016) Exact quantification of cellular robustness in genome-scale metabolic networks. Bioinformatics 32:730–737. https://doi.org/10.1093/bioinformatics/btv649

    Article  CAS  PubMed  Google Scholar 

  36. Yang L, Srinivasan S, Mahadevan R, Cluett WR (2015) Characterizing metabolic pathway diversification in the context of perturbation size. Metab Eng 28:114–122. https://doi.org/10.1016/j.ymben.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  37. Mahadevan R, von Kamp A, Klamt S (2015) Genome-scale strain designs based on regulatory minimal cut sets. Bioinformatics 31(17):2844–2851. https://doi.org/10.1093/bioinformatics/btv217

Download references

Acknowledgment

This work was supported by the Austrian BMWFW, BMVIT, SFG, Standortagentur Tirol, Government of Lower Austria and ZIT through the Austrian FFG-COMET-Funding Program. D.A.P.N. was funded by the Austrian Science Fund (FWF): Doctoral Program BioToP—Biomolecular Technology of Proteins (FWF W1224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Zanghellini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jungreuthmayer, C., Gerstl, M.P., Peña Navarro, D.A., Hanscho, M., Ruckerbauer, D.E., Zanghellini, J. (2018). Designing Optimized Production Hosts by Metabolic Modeling. In: Fondi, M. (eds) Metabolic Network Reconstruction and Modeling. Methods in Molecular Biology, vol 1716. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7528-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7528-0_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7527-3

  • Online ISBN: 978-1-4939-7528-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics