Skip to main content

Detection of ASC Speck Formation by Flow Cytometry and Chemical Cross-linking

  • Protocol
  • First Online:
Innate Immune Activation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1714))

Abstract

Assembly of a relatively large protein aggregate or “speck” formed by the adaptor protein ASC is a common downstream step in the activation of most inflammasomes. This unique feature of ASC allows its visualization by several imaging techniques and constitutes a reliable and feasible readout for inflammasome activation in cells and tissues. We have previously described step-by-step protocols to generate immortalized cell lines stably expressing ASC fused to a fluorescent protein for measuring inflammasome activation by confocal microscopy, and immunofluorescence of endogenous ASC in primary cells. Here, we present two more methods to detect ASC speck formation: (1) Assessment of ASC speck formation by flow cytometry; and (2) Chemical cross-linking of ASC followed by immunoblotting. These methods allow for the discrimination of inflammasome-activated versus non-activated cells, the identification of lineage-specific inflammasome activation in complex cell mixtures, and sorting of inflammasome-activated cells for further analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13(6):397–411

    Article  CAS  PubMed  Google Scholar 

  2. Franchi L, Muñoz-Planillo R, Nuñez G (2012) Sensing and reacting to microbes through the inflammasomes. Nat Immunol 13(4):325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lu A et al (2014) Unified Polymerization Mechanism for the Assemblyof ASC-Dependent Inflammasomes. Cell 156(6):1193–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Masumoto J et al (1999) ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J Biol Chem 274(48):33835–33838

    Article  CAS  PubMed  Google Scholar 

  5. Hoss F, Rodriguez-Alcazar JF, Latz E (2017) Assembly and regulation of ASC specks. Cell Mol Life Sci 74(7):1211–1229

    Article  CAS  PubMed  Google Scholar 

  6. Fernandes-Alnemri T et al (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14(9):1590–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cai X et al (2014) Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156(6):1207–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Franklin BS et al (2014) The adaptor ASC has extracellular and “prionoid” activities that propagate inflammation. Nat Immunol 15(8):727–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He W-T et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25(12):1285–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stutz A, Horvath GL, Monks BG, Latz E (2013) ASC speck formation as a readout for inflammasome activation. Methods Mol Biol 1040:91–101

    Article  CAS  PubMed  Google Scholar 

  11. Baroja-Mazo A et al (2014) The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol 15:738–748

    Article  CAS  PubMed  Google Scholar 

  12. Stutz A, Horvath GL, Monks BG, Latz E (2013) ASC speck formation as a readout for inflammasome activation. Methods in molecular biology. Humana Press, Totowa, NJ, pp 91–101

    Google Scholar 

  13. Beilharz M, De Nardo’s D, Latz E, Franklin BS (2016) Measuring NLR oligomerization II: detection of ASC speck formation by confocal microscopy and immunofluorescence. Methods Mol Biol 1417(Chapter 9):145–158

    Article  CAS  PubMed  Google Scholar 

  14. Sester DP et al (2015) A novel flow cytometric method to assess inflammasome formation. J Immunol 194(1):455–462

    Article  CAS  PubMed  Google Scholar 

  15. Ramdzan YM et al (2012) Tracking protein aggregation and mislocalization in cells with flow cytometry. Nat Methods 9(5):467–470

    Article  CAS  PubMed  Google Scholar 

  16. Arora B, Tandon R, Attri P, Bhatia R (2017) Chemical crosslinking: role in protein and peptide science. Curr Protein Pept Sci 18(9):946

    Article  CAS  PubMed  Google Scholar 

  17. Reddy N, Reddy R, Jiang Q (2015) Crosslinking biopolymers for biomedical applications. Trends Biotechnol 33(6):362–369

    Article  CAS  PubMed  Google Scholar 

  18. Mattson G et al (1993) A practical approach to crosslinking. Mol Biol Rep 17(3):167–183

    Article  CAS  PubMed  Google Scholar 

  19. Labeta MO, Fernandez N, Festenstein H (1988) Solubilisation effect of Nonidet P-40, triton X-100 and CHAPS in the detection of MHC-like glycoproteins. J Immunol Methods 112(1):133–138

    Article  CAS  PubMed  Google Scholar 

  20. Bandura DR et al (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81(16):6813–6822

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Elmar Endl, and Peter Wurst from the flow cytometry core facility of the University Clinics Bonn for valuable discussion during the development of the technique and their continuous support. BF is supported by grants from the Brigitte und Dr. Konstanze Wegener-Stiftung, Germany and Internal Seed Funding Program of the Medical faculty of the University of Bonn (BONFOR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo S. Franklin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hoss, F., Rolfes, V., Davanso, M.R., Braga, T.T., Franklin, B.S. (2018). Detection of ASC Speck Formation by Flow Cytometry and Chemical Cross-linking. In: De Nardo, D., De Nardo, C. (eds) Innate Immune Activation. Methods in Molecular Biology, vol 1714. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7519-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7519-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7518-1

  • Online ISBN: 978-1-4939-7519-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics