Skip to main content

Quantification of Scleral Biomechanics and Collagen Fiber Alignment

  • Protocol
  • First Online:
Glaucoma

Abstract

The stiffness of the sclera is important in several ocular disorders, and there is hence a need to quantify the biomechanical properties of this tissue. Here, we present two methods for measuring the stiffness of scleral ocular tissues: ocular compliance testing and digital image correlation strain mapping. In tandem with these approaches, we provide two methods to spatially quantify the anisotropic alignment of collagen fibers making up the sclera, using second harmonic generation microscopy and small-angle light scattering. Together, these approaches allow specimen-specific measurement of tissue stiffness and collagen alignment, which are key factors in determining how the eye responds to mechanical loads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campbell IC, Coudrillier B, Ethier CR (2014) Biomechanics of the posterior eye: a critical role in health and disease. J Biomech Eng 136(2):021005. https://doi.org/10.1115/1.4026286

    Article  PubMed  Google Scholar 

  2. Sigal IA, Flanagan JG, Ethier CR (2005) Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 46(11):4189–4199. https://doi.org/10.1167/iovs.05-0541

    Article  PubMed  Google Scholar 

  3. Norton TT, Siegwart JT Jr (2013) Light levels, refractive development, and myopia–a speculative review. Exp Eye Res 114:48–57. https://doi.org/10.1016/j.exer.2013.05.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bhardwaj R, Ziegler K, Seo JH, Ramesh KT, Nguyen TD (2014) A computational model of blast loading on the human eye. Biomech Model Mechanobiol 13(1):123–140. https://doi.org/10.1007/s10237-013-0490-3

    Article  PubMed  Google Scholar 

  5. Komai Y, Ushiki T (1991) The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci 32(8):2244–2258

    CAS  PubMed  Google Scholar 

  6. Friedenwald JS (1949) Clinical significance of ocular rigidity in relation to the tonometric measurement. Trans Am Acad Ophthalmol Otolaryngol 53:262–264

    CAS  PubMed  Google Scholar 

  7. Sherwood JM, Reina-Torres E, Bertrand JA, Rowe B, Overby DR (2016) Measurement of outflow facility using iPerfusion. PLoS One 11(3):e0150694. https://doi.org/10.1371/journal.pone.0150694

    Article  PubMed Central  PubMed  Google Scholar 

  8. Fazio MA, Grytz R, Bruno L, Girard MJ, Gardiner S, Girkin CA, Downs JC (2012) Regional variations in mechanical strain in the posterior human sclera. Invest Ophthalmol Vis Sci 53(9):5326–5333. https://doi.org/10.1167/iovs.12-9668

    Article  PubMed Central  PubMed  Google Scholar 

  9. Coudrillier B, Tian J, Alexander S, Myers KM, Quigley HA, Nguyen TD (2012) Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Invest Ophthalmol Vis Sci 53(4):1714–1728. https://doi.org/10.1167/iovs.11-8009

    Article  PubMed Central  PubMed  Google Scholar 

  10. Zoumi A, Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci U S A 99(17):11014–11019. https://doi.org/10.1073/pnas.172368799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chien JCW, Chang EP (1972) Small-angle light scattering of reconstituted collagen. Macromolecules 5:610–617

    Article  CAS  Google Scholar 

  12. Ferdman AG, Yannas IV (1993) Scattering of light from histologic sections: a new method for the analysis of connective tissue. J Invest Dermatol 100(5):710–716

    Article  CAS  PubMed  Google Scholar 

  13. Garton A, Carlsson DJ, Stepaniak RF, Wiles DM (1979) The use of small-angle light-scattering (SALS) to examine the structure of fibers. Text Res J 49:335–342

    Article  CAS  Google Scholar 

  14. Joyce EM, Liao J, Schoen FJ, Mayer JE Jr, Sacks MS (2009) Functional collagen fiber architecture of the pulmonary heart valve cusp. Ann Thorac Surg 87(4):1240–1249. https://doi.org/10.1016/j.athoracsur.2008.12.049

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kronick PL, Sacks MS (1991) Quantification of vertical-fiber defect in cattle hide by small-angle light scattering. Connect Tissue Res 27(1):1–13

    Article  CAS  PubMed  Google Scholar 

  16. Sacks MS, Smith DB, Hiester ED (1997) A small angle light scattering device for planar connective tissue microstructural analysis. Ann Biomed Eng 25(4):678–689

    Article  CAS  PubMed  Google Scholar 

  17. Yan D, McPheeters S, Johnson G, Utzinger U, Vande Geest JP (2011) Microstructural differences in the human posterior sclera as a function of age and race. Invest Ophthalmol Vis Sci 52(2):821–829. https://doi.org/10.1167/iovs.09-4651

    Article  PubMed Central  PubMed  Google Scholar 

  18. Girard MJ, Dahlmann-Noor A, Rayapureddi S, Bechara JA, Bertin BM, Jones H, Albon J, Khaw PT, Ethier CR (2011) Quantitative mapping of scleral fiber orientation in normal rat eyes. Invest Ophthalmol Vis Sci 52(13):9684–9693. https://doi.org/10.1167/iovs.11-7894

    Article  PubMed  Google Scholar 

  19. Lei Y, Overby DR, Boussommier-Calleja A, Stamer WD, Ethier CR (2011) Outflow physiology of the mouse eye: pressure dependence and washout. Invest Ophthalmol Vis Sci 52(3):1865–1871. https://doi.org/10.1167/iovs.10-6019

    Article  PubMed Central  PubMed  Google Scholar 

  20. Sutton MA (2008) Digital image correlation for shape and deformation measurements. In: Sharpe NW (ed) Springer handbook of experimental solid mechanics. Springer US, Boston, MA, pp 565–600. https://doi.org/10.1007/978-0-387-30877-7_20

    Chapter  Google Scholar 

  21. Ng CP, Swartz MA (2006) Mechanisms of interstitial flow-induced remodeling of fibroblast-collagen cultures. Ann Biomed Eng 34(3):446–454. https://doi.org/10.1007/s10439-005-9067-3

    Article  PubMed  Google Scholar 

  22. Guo X, Guo Z, Wei H, Yang H, He Y, Xie S, Wu G, Deng X, Zhao Q, Li L (2011) In vivo comparison of the optical clearing efficacy of optical clearing agents in human skin by quantifying permeability using optical coherence tomography. Photochem Photobiol 87(3):734–740. https://doi.org/10.1111/j.1751-1097.2011.00908.x

    Article  CAS  PubMed  Google Scholar 

  23. Goh YK (2014) Quantitative mapping of collagen fibre organization in porcine corneas using small angle light scattering (SALS) technique. National University of Singapore, Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ross Ethier Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Campbell, I.C. et al. (2018). Quantification of Scleral Biomechanics and Collagen Fiber Alignment. In: Jakobs, T. (eds) Glaucoma. Methods in Molecular Biology, vol 1695. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7407-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7407-8_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7406-1

  • Online ISBN: 978-1-4939-7407-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics