Skip to main content

Chromatin Immunoprecipitation from Mouse Embryonic Tissue or Adherent Cells in Culture, Followed by Next-Generation Sequencing

  • Protocol
  • First Online:
Chromatin Immunoprecipitation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1689))

Abstract

Chromatin immunoprecipitation (ChIP) is considered the method of choice for characterizing interactions between a protein of interest and specific genomic regions. It is of paramount importance in gene-regulation studies, as it can be used to map the target regions of sequence-specific transcription factors and cofactors, or histone marks that characterize distinct chromatin states. ChIP can be used directly to probe interactions with candidate regions (ChIP-PCR), or coupled to Next-Generation Sequencing (ChIP-seq) to generate genome-wide information. This chapter describes a protocol for performing ChIP and ChIP-seq of transcription factors, starting either from mouse embryonic tissue or adherent cells in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680. doi:10.1038/nrg2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13(12):840–852. doi:10.1038/nrg3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Monteiro CB, Costa MF, Reguenga C et al (2014) Paired related homeobox protein-like 1 (Prrxl1) controls its own expression by a transcriptional autorepression mechanism. FEBS Lett 588:3475–3482. doi:10.1016/j.febslet.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  4. Mateo JL, Van den Berg DLC, Haeussler M et al (2015) Characterization of the neural stem cell gene regulatory network identifies OLIG2 as a multifunctional regulator of self-renewal. Genome Res 25:41–56. doi:10.1101/gr.173435.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Raposo AA, Vasconcelos FF, Drechsel D et al (2015) Ascl1 coordinately regulates gene expression and the chromatin landscape during neurogenesis. Cell Rep 10:1544–1556. doi:10.1016/j.celrep.2015.02.025

    Article  CAS  PubMed Central  Google Scholar 

  6. Vasconcelos FF, Sessa A, Laranjeira C et al (2016) MyT1 counteracts the neural progenitor program to promote vertebrate neurogenesis. Cell Rep 17:469–483. doi:10.1016/j.celrep.2016.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Conti L, Pollard SM, Gorba T et al (2005) Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3:1594–1606. doi:10.1371/journal.pbio.0030283

    Article  CAS  Google Scholar 

  8. Tian B, Yang J, Brasier AR (2012) Two-step crosslinking for analysis of protein-chromatin interactions. Methods Mol Biol 809:105–120. doi:10.1007/978-1-61779-376-9_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo S. Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Soares, M.A.F., Castro, D.S. (2018). Chromatin Immunoprecipitation from Mouse Embryonic Tissue or Adherent Cells in Culture, Followed by Next-Generation Sequencing. In: Visa, N., Jordán-Pla, A. (eds) Chromatin Immunoprecipitation. Methods in Molecular Biology, vol 1689. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7380-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7380-4_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7379-8

  • Online ISBN: 978-1-4939-7380-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics