Skip to main content

High-Resolution Mapping of Modified DNA Nucleobases Using Excision Repair Enzymes

  • Protocol
  • First Online:
Genome Instability

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1672))

Abstract

Modification of DNA nucleobases has a profound effect on genome function. We developed a method that maps the positions of the modified DNA nucleobases throughout genomic DNA. This method couples in vitro nucleobase excision with massively parallel DNA sequencing to determine the location of modified DNA nucleobases with single base precision. This protocol was used to map uracil incorporation and UV photodimers in DNA, and a modification of the protocol has been used to map sparse modification events in cells. The Excision-seq protocol is broadly applicable to a variety of base modifications for which an excision enzyme is available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kumari S, Rastogi RP et al (2008) DNA damage: detection strategies. EXCLI J 7:44–62

    Google Scholar 

  2. Clark TA, Spittle KE, Turner SW et al (2011) Direct detection and sequencing of damaged DNA bases. Genome Integr 2:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baute J, Depicker A (2008) Base excision repair and its role in maintaining genome stability. Crit Rev Biochem Mol Biol 43:239–276

    Article  CAS  PubMed  Google Scholar 

  4. Hegde ML, Hazra TK, Mitra S (2008) Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 18:27–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bryan DS, Ransom M, Adane B et al (2014) High resolution mapping of modified DNA nucleobases using excision repair enzymes. Genome Res 24:1534–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sancar GB, Sancar A (2006) Purification and characterization of DNA photolyases. Methods Enzymol 408:121–156

    Article  CAS  PubMed  Google Scholar 

  7. Ryoji M, Katayama H, Fusamae H et al (1996) Repair of DNA damage in a mitochondrial lysate of Xenopus laevis oocytes. Nucleic Acids Res 24:4057–4062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu Z, Tan C, Guo X et al (2011) Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase. Proc Natl Acad Sci U S A 108:14831–14836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li J, Liu Z, Tan C et al (2010) Dynamics and mechanism of repair of ultraviolet-induced (6-4) photoproduct by photolyase. Nature 466:887–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li H, Handsaker B, Wysoker A et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  12. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karolchik D, Hinrichs AS, Kent WJ (2001) The UCSC Genome Browser. Wiley, Hoboken, NJ

    Google Scholar 

  14. Smith TS, Heger A, Sudbery I (2016) UMI-tools: modelling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. bioRxiv 051755

    Google Scholar 

  15. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2012) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Research 41 (D1):D991–D995

    Google Scholar 

Download references

Acknowledgments

We thank A. Sancar and D. Zhang for graciously providing purified photolyase enzymes during the development of the Excision-seq protocol. This work was supported in part by a March of Dimes Basil O’Connor Research Grant (J.H.), a Damon Runyon-Rachleff Innovation award (J.H.), a Research Scholar Grant from the American Cancer Society (RSG-13-216-01-DMC), and a Department of Defense Visionary Postdoc Award (to M.R., W81XWH-12-1-0333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay R. Hesselberth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ransom, M., Bryan, D.S., Hesselberth, J.R. (2018). High-Resolution Mapping of Modified DNA Nucleobases Using Excision Repair Enzymes. In: Muzi-Falconi, M., Brown, G. (eds) Genome Instability. Methods in Molecular Biology, vol 1672. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7306-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7306-4_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7305-7

  • Online ISBN: 978-1-4939-7306-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics