Skip to main content

Imaging of Isolated Extracellular Vesicles Using Fluorescence Microscopy

  • Protocol
  • First Online:
Extracellular Vesicles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1660))

Abstract

High-resolution fluorescence microscopy approaches enable the study of single objects or biological complexes. Single object studies have the general advantage of uncovering heterogeneity that may be hidden during the ensemble averaging which is common in any bulk conventional biochemical analysis. The implementation of single object analysis in the study of extracellular vesicles (EVs) may therefore be used to characterize specific properties of vesicle subsets which would be otherwise undetectable. We present a protocol for staining isolated EVs with a fluorescent lipid dye and attaching them onto a glass slide in preparation for imaging with total internal reflection fluorescence microscopy (TIRF-M) or other high-resolution microscopy techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tkach M, Thery C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164(6):1226–1232

    Article  CAS  PubMed  Google Scholar 

  2. Revenfeld AL, Baek R, Nielsen MH, Stensballe A, Varming K, Jorgensen M (2014) Diagnostic and prognostic potential of extracellular vesicles in peripheral blood. Clin Ther 36(6):830–846

    Article  PubMed  Google Scholar 

  3. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3:Unit 3.22

    PubMed  Google Scholar 

  4. Cocucci E, Meldolesi J (2015) Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 25(6):364–372

    Article  CAS  PubMed  Google Scholar 

  5. Cvjetkovic A, Lotvall J, Lasser C (2014) The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles 3

    Google Scholar 

  6. Cocucci E, Aguet F, Boulant S, Kirchhausen T (2012) The first five seconds in the life of a clathrin-coated pit. Cell 150(3):495–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chou YY, Vafabakhsh R, Doganay S, Gao Q, Ha T, Palese P (2012) One influenza virus particle packages eight unique viral RNAs as shown by FISH analysis. Proc Natl Acad Sci U S A 109(23):9101–9106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van der Pol E, Coumans F, Varga Z, Krumrey M, Nieuwland R (2013) Innovation in detection of microparticles and exosomes. J Thromb Haemost 11(Suppl 1):36–45

    PubMed  Google Scholar 

  9. Nolan JP, Moore J (2016) Extracellular vesicles: great potential, many challenges. Cytometry B Clin Cytom 90:324–325

    Article  PubMed  Google Scholar 

  10. Fang Y, Wu N, Gan X, Yan W, Morrell JC, Gould SJ (2007) Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol 5(6):e158

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lai CP, Kim EY, Badr CE, Weissleder R, Mempel TR, Tannous BA, Breakefield XO (2015) Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun 6:7029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koliha N, Wiencek Y, Heider U, Jungst C, Kladt N, Krauthauser S, Johnston IC, Bosio A, Schauss A, Wild S (2016) A novel multiplex bead-based platform highlights the diversity of extracellular vesicles. J Extracell Vesicles 5:29975

    Article  PubMed  Google Scholar 

  13. Exosome Spin Columns. https://tools.thermofisher.com/content/sfs/manuals/MAN0008464_Rev01_PI_08Aug2013.pdf. Accessed 4 Apr 2016

Download references

Acknowledgment

This work was supported by US National Institutes of Health National Human Genome Research Institute Grant P50 HG005550, The Ohio State Cancer Center (P30-CA016058), and an intramural fund (IRP46050-502339) granted to EC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Cocucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ter-Ovanesyan, D., Kowal, E.J.K., Regev, A., Church, G.M., Cocucci, E. (2017). Imaging of Isolated Extracellular Vesicles Using Fluorescence Microscopy. In: Kuo, W., Jia, S. (eds) Extracellular Vesicles. Methods in Molecular Biology, vol 1660. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7253-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7253-1_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7251-7

  • Online ISBN: 978-1-4939-7253-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics