Skip to main content

Measuring Cyclic Diguanylate (c-di-GMP)-Specific Phosphodiesterase Activity Using the MANT-c-di-GMP Assay

  • Protocol
  • First Online:
c-di-GMP Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1657))

Abstract

The second messenger, cyclic diguanylate (c-di-GMP), regulates a variety of bacterial cellular and social behaviors. A key determinant of c-di-GMP levels in cells is its degradation by c-di-GMP-specific phosphodiesterases (PDEs). Here, we describe an assay to determine c-di-GMP degradation rates in vitro using 2′-O-(N′-methylanthraniloyl)-cyclic diguanylate (MANT-c-di-GMP). Additionally, a protocol for the production and purification of recombinant Pseudomonas aeruginosa RocR, a c-di-GMP-specific PDE that may serve as a control in MANT-c-di-GMP assays, is provided. The use of the fluorescent MANT-c-di-GMP analogue can deliver fundamental information about PDE function, and is suitable for identifying and investigating c-di-GMP-specific PDE activators and inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, Benziman M (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–281

    Article  CAS  PubMed  Google Scholar 

  2. Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273

    Article  CAS  PubMed  Google Scholar 

  4. Mills E, Pultz IS, Kulasekara HD, Miller SI (2011) The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol 13:1122–1129

    Article  CAS  PubMed  Google Scholar 

  5. Hengge R, Grundling A, Jenal U, Ryan R, Yildiz F (2016) Bacterial signal transduction by cyclic Di-GMP and other nucleotide second messengers. J Bacteriol 198:15–26

    Article  CAS  PubMed  Google Scholar 

  6. Almblad H, Harrison JJ, Rybtke M, Groizeleau J, Givskov M, Parsek MR, Tolker-Nielsen T (2015) The cyclic AMP-Vfr signaling pathway in Pseudomonas aeruginosa is inhibited by cyclic di-GMP. J Bacteriol 197:2190–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Paul R, Weiser S, Amiot NC, Chan C, Schirmer T, Giese B, Jenal U (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18:715–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schirmer T, Jenal U (2009) Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 7:724–735

    Article  CAS  PubMed  Google Scholar 

  9. Christen M, Christen B, Folcher M, Schauerte A, Jenal U (2005) Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem 280:30829–30837

    Article  CAS  PubMed  Google Scholar 

  10. Cohen D, Mechold U, Nevenzal H, Yarmiyhu Y, Randall TE, Bay DC, Rich JD, Parsek MR, Kaever V, Harrison JJ, Banin E (2015) Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 112:11359–11364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Orr MW, Donaldson GP, Severin GB, Wang J, Sintim HO, Waters CM, Lee VT (2015) Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proc Natl Acad Sci U S A 112:E5048–E5057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ryan RP, Fouhy Y, Lucey JF, Crossman LC, Spiro S, He YW, Zhang LH, Heeb S, Camara M, Williams P, Dow JM (2006) Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A 103:6712–6717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stelitano V, Giardina G, Paiardini A, Castiglione N, Cutruzzola F, Rinaldo S (2013) C-di-GMP hydrolysis by Pseudomonas aeruginosa HD-GYP phosphodiesterases: analysis of the reaction mechanism and novel roles for pGpG. PLoS One 8:e74920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bellini D, Caly DL, McCarthy Y, Bumann M, An SQ, Dow JM, Ryan RP, Walsh MA (2013) Crystal structure of an HD-GYP domain cyclic-di-GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron center. Mol Microbiol 91:26–38

    Article  PubMed  PubMed Central  Google Scholar 

  15. Valentini M, Filloux A (2016) Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem 291:12547–12555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Groizeleau J, Rybtke M, Andersen JB, Berthelsen J, Liu Y, Yang L, Nielsen TE, Kaever V, Givskov M, Tolker-Nielsen T (2016) The anti-cancerous drug doxorubicin decreases the c-di-GMP content in Pseudomonas aeruginosa but promotes biofilm formation. Microbiology 162(10):1797–1807

    Article  CAS  PubMed  Google Scholar 

  17. Kim HS, Cha E, Kim Y, Jeon YH, Olson BH, Byun Y, Park HD (2016) Raffinose, a plant galactoside, inhibits Pseudomonas aeruginosa biofilm formation via binding to LecA and decreasing cellular cyclic diguanylate levels. Sci Rep 6:25318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Antoniani D, Bocci P, Maciag A, Raffaelli N, Landini P (2010) Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Appl Microbiol Biotechnol 85:1095–1104

    Article  CAS  PubMed  Google Scholar 

  19. Simm R, Morr M, Remminghorst U, Andersson M, Romling U (2009) Quantitative determination of cyclic diguanosine monophosphate concentrations in nucleotide extracts of bacteria by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Anal Biochem 386:53–58

    Article  CAS  PubMed  Google Scholar 

  20. Irie Y, Parsek MR (2014) LC/MS/MS-based quantitative assay for the secondary messenger molecule, c-di-GMP. Methods Mol Biol 1149:271–279

    Article  CAS  PubMed  Google Scholar 

  21. Spangler C, Bohm A, Jenal U, Seifert R, Kaever V (2010) A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. J Microbiol Methods 81:226–231

    Article  CAS  PubMed  Google Scholar 

  22. Waters CM, Lu W, Rabinowitz JD, Bassler BL (2008) Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol 190:2527–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hickman JW, Harwood CS (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69:376–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakayama S, Kelsey I, Wang J, Roelofs K, Stefane B, Luo Y, Lee VT, Sintim HO (2011) Thiazole orange-induced c-di-GMP quadruplex formation facilitates a simple fluorescent detection of this ubiquitous biofilm regulating molecule. J Am Chem Soc 133:4856–4864

    Article  CAS  PubMed  Google Scholar 

  25. Stelitano V, Brandt A, Fernicola S, Franceschini S, Giardina G, Pica A, Rinaldo S, Sica F, Cutruzzola F (2013) Probing the activity of diguanylate cyclases and c-di-GMP phosphodiesterases in real-time by CD spectroscopy. Nucleic Acids Res 41:e79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakayama S, Luo Y, Zhou J, Dayie TK, Sintim HO (2012) Nanomolar fluorescent detection of c-di-GMP using a modular aptamer strategy. Chem Commun 48:9059–9061

    Article  CAS  Google Scholar 

  27. Roembke BT, Zhou J, Zheng Y, Sayre D, Lizardo A, Bernard L, Sintim HO (2014) A cyclic dinucleotide containing 2-aminopurine is a general fluorescent sensor for c-di-GMP and 3′,3′-cGAMP. Mol BioSyst 10:1568–1575

    Article  CAS  PubMed  Google Scholar 

  28. Nakayama S, Roelofs K, Lee VT, Sintim HO (2012) A C-di-GMP-proflavine-hemin supramolecular complex has peroxidase activity–implication for a simple colorimetric detection. Mol BioSyst 8:726–729

    Article  CAS  PubMed  Google Scholar 

  29. Roembke BT, Wang J, Nakayama S, Zhou J, Sintim HO (2013) Octameric G8 c-di-GMP is an efficient peroxidase and this suggests that an open G-tetrad site can effectively enhance hemin peroxidation reactions. RSC Adv 3:6305–6310

    Article  CAS  Google Scholar 

  30. Zhou J, Zheng Y, Roembke BT, Robinson S, Opoku-Temeng C, Sayre DA, Sintim HO (2017) Fluorescent analogs of cyclic and linear dinucleotides as phosphodiesterase and oligoribonuclease activity probes. RSC Adv 7:5421–5426

    Article  CAS  Google Scholar 

  31. Sharma IM, Dhanaraman T, Mathew R, Chatterji D (2012) Synthesis and characterization of a fluorescent analogue of cyclic di-GMP. Biochemistry 51:5443–5453

    Article  CAS  PubMed  Google Scholar 

  32. Hiratsuka T (1982) New fluorescent analogs of cAMP and cGMP available as substrates for cyclic nucleotide phosphodiesterase. J Biol Chem 257:13354–13358

    CAS  PubMed  Google Scholar 

  33. Ren J, Goss DJ (1996) Synthesis of a fluorescent 7-methylguanosine analog and a fluorescence spectroscopic study of its reaction with wheatgerm cap binding proteins. Nucleic Acids Res 24:3629–3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kotaka M, Dutta S, Lee HC, Lim MJ, Wong Y, Rao F, Mitchell EP, Liang ZX, Lescar J (2009) Expression, purification and preliminary crystallographic analysis of Pseudomonas aeruginosa RocR protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:1035–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rao F, Yang Y, Qi Y, Liang ZX (2008) Catalytic mechanism of cyclic-di-GMP-specific phosphodiesterase: a study of the EAL domain-containing RocR from Pseudomonas aeruginosa. J Bacteriol 190:3622–3631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  37. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

Download references

Acknowledgments

DC was supported by a Federation of European Microbiological Societies (FEMS) fellowship. TER was supported by a Queen Elizabeth II Scholarship. HA was supported by an Eyes High Postdoctoral Fellowship. JJH has been supported by a Canada Research Chair from the Canadian Institutes for Health Research (CIHR), and a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC). EB was supported by the Israel Science Foundation Grant 1124/12 and the Dyna and Fala Weinstock Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joe J. Harrison or Ehud Banin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Eli, D., Randall, T.E., Almblad, H., Harrison, J.J., Banin, E. (2017). Measuring Cyclic Diguanylate (c-di-GMP)-Specific Phosphodiesterase Activity Using the MANT-c-di-GMP Assay. In: Sauer, K. (eds) c-di-GMP Signaling. Methods in Molecular Biology, vol 1657. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7240-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7240-1_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7239-5

  • Online ISBN: 978-1-4939-7240-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics