Skip to main content

Targeted Isolation and Characterization of T-DNA Mutants Defective in Photorespiration

  • Protocol
  • First Online:
Photorespiration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1653))

Abstract

Transfer DNA (T-DNA) insertional lines have facilitated reverse genetic approaches in plant science and considerably accelerated the functional characterization of genes. Typically, online databases of mutant collections are searched for suitable mutant alleles of the gene of interest (GOI). Before such lines can be characterized physiologically, the genotype of the respective mutant has to be verified followed by the quantitative examination of downstream effects on the levels of the respective mRNA and the encoded protein. Here, we describe a typical workflow for the identification of photorespiratory mutants followed by phenotypic characterization according to growth under different conditions, photosynthesis on the levels of chlorophyll a fluorescence and gas exchange, and metabolite analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koncz C, Nemeth K, Redei GP, Schell J (1992) T-DNA insertional mutagenesis in Arabidopsis. Plant Mol Biol 5:963–976

    Article  Google Scholar 

  2. O'Malley RC, Barragan CC, Ecker JR (2015) A user’s guide to the Arabidopsis T-DNA insertion mutant collections. Methods Mol Biol 1284:323–342

    Article  PubMed  PubMed Central  Google Scholar 

  3. O'Malley RC, Ecker JR (2010) Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J 6:928–940

    Article  Google Scholar 

  4. Puchta H (2015) Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. Plant J. doi:10.1111/tpj.13100

  5. Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 12:2283–2290

    Article  Google Scholar 

  6. Timm S, Bauwe H (2013) The variety of photorespiratory phenotypes – employing the current status for future research directions on photorespiration. Plant Biol (Stuttg) 4:737–747

    Article  Google Scholar 

  7. Timm S, Mielewczik M, Florian A, Frankenbach S, Dreissen A, Hocken N et al (2012) High-to-low CO2 acclimation reveals plasticity of the photorespiratory pathway and indicates regulatory links to cellular metabolism of Arabidopsis. PLoS One 8:e42809

    Article  Google Scholar 

  8. Somerville CR (2001) An early Arabidopsis demonstration. Resolving a few issues concerning photorespiration. Plant Physiol 1:20–24

    Article  Google Scholar 

  9. Orf I, Timm S, Bauwe H, Fernie AR, Hagemann M, Kopka J, Nikoloski Z (2016) Can cyanobacteria serve as a model of plant photorespiration?—a comparative meta-analysis of metabolite profiles. J Exp Bot 10:2941–2952

    Article  Google Scholar 

  10. Timm S, Florian A, Fernie AR, Bauwe H (2016) The regulatory interplay between photorespiration and photosynthesis. J Exp Bot 10:2923–2929

    Article  Google Scholar 

  11. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  12. Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 7:1499–1510

    Article  Google Scholar 

  13. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51:263–273

    Article  CAS  PubMed  Google Scholar 

  14. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 19:4321–4325

    Article  Google Scholar 

  15. Logemann J, Schell J, Willmitzer L (1987) Improved method for the isolation of RNA from plant tissues. Anal Biochem 1:16–20

    Article  Google Scholar 

  16. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 24:5294–5299

    Article  Google Scholar 

  17. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 9:4350–4354

    Article  Google Scholar 

  18. Timm S, Florian A, Jahnke K, Nunes-Nesi A, Fernie AR, Bauwe H (2011) The hydroxypyruvate-reducing system in Arabidopsis: multiple enzymes for the same end. Plant Physiol 2:694–705

    Article  Google Scholar 

  19. Eisenhut M, Bräutigam A, Timm S, Florian A, Tohge T, Fernie AR, Bauwe H, Weber APM (2016) Photorespiration is crucial to the dynamic response of photosynthetic metabolism and stomatal movement to altered CO2 availability. Mol Plant. doi:10.1016/j.molp.2016.09.011

  20. Fernie AR, Aharoni A, Willmitzer L, Stitt M, Tohge T, Kopka J et al (2011) Recommendations for reporting metabolite data. Plant Cell 7:2477–2482

    Article  Google Scholar 

  21. Arrivault S, Guenther M, Ivakov A, Feil R, Vosloh D, van Dongen JT et al (2009) Use of reverse-phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations. Plant J 5:826–839

    Article  Google Scholar 

  22. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory is funded by the German research foundation (DFG), especially in frame of the research unit on photorespiration (PROMICS—FOR1186, to H.B.). We wish to thank various Bachelor and Master Students involved in the isolation and characterization of photorespiratory mutants, namely: Franziska Flügel, Silja Frankenbach, Nina Gehm, Jonas Giese, and Julia Walter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Timm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Timm, S., Modde, K., Bauwe, H. (2017). Targeted Isolation and Characterization of T-DNA Mutants Defective in Photorespiration. In: Fernie, A., Bauwe, H., Weber, A. (eds) Photorespiration. Methods in Molecular Biology, vol 1653. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7225-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7225-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7224-1

  • Online ISBN: 978-1-4939-7225-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics