Skip to main content

Native Mass Spectrometry for the Characterization of Structure and Interactions of Membrane Proteins

  • Protocol
  • First Online:
Membrane Protein Structure and Function Characterization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1635))

Abstract

Over the past years, native mass spectrometry and ion mobility have grown into techniques that are widely applicable to the study of aspects of protein structure. More recently, it has become apparent that this approach provides a very promising avenue for the investigation of integral membrane proteins in lipid or detergent environments.

In this chapter, we discuss applications of native mass spectrometry and ion mobility in membrane protein research—what is important to take into consideration when working with membrane proteins, and what the requirements are for sample preparation for native mass spectrometry. Furthermore, we will discuss the types of information provided by the measurements, including the oligomeric state, subunit composition and stoichiometry, interactions with detergents or lipids, conformational transitions, and the binding and structural effect of ligands and drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hopper JT, Robinson CV (2014) Mass spectrometry quantifies protein interactions – from molecular chaperones to membrane porins. Angew Chem Int Ed Engl 53(51):14002–14015

    Article  CAS  PubMed  Google Scholar 

  2. Konijnenberg A et al (2015) Extending native mass spectrometry approaches to integral membrane proteins. Biol Chem 396(9–10):991–1002

    CAS  PubMed  Google Scholar 

  3. Landreh M, Robinson CV (2015) A new window into the molecular physiology of membrane proteins. J Physiol 593(2):355–362

    Article  CAS  PubMed  Google Scholar 

  4. Beveridge R et al (2013) Mass spectrometry methods for intrinsically disordered proteins. Analyst 138(1):32–42

    Article  CAS  PubMed  Google Scholar 

  5. van den Heuvel RH, Heck AJ (2004) Native protein mass spectrometry: from intact oligomers to functional machineries. Curr Opin Chem Biol 8(5):519–526

    Article  PubMed  Google Scholar 

  6. Sharon M, Robinson CV (2007) The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu Rev Biochem 76:167–193

    Article  CAS  PubMed  Google Scholar 

  7. Konijnenberg A, Butterer A, Sobott F (2013) Native ion mobility-mass spectrometry and related methods in structural biology. Biochim Biophys Acta 1834(6):1239–1256

    Article  CAS  PubMed  Google Scholar 

  8. Marcoux J, Robinson CV (2013) Twenty years of gas phase structural biology. Structure 21(9):1541–1550

    Article  CAS  PubMed  Google Scholar 

  9. Hyung SJ, Ruotolo BT (2012) Integrating mass spectrometry of intact protein complexes into structural proteomics. Proteomics 12(10):1547–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lorenzen K, van Duijn E (2010) Native mass spectrometry as a tool in structural biology. Curr Protoc Protein Sci Chapter 17:Unit17.12

    Google Scholar 

  11. Tsai YC et al (2012) Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes. J Biol Chem 287(24):20471–20481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marcoux J et al (2013) Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. Proc Natl Acad Sci U S A 110(24):9704–9709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Woods LA, Radford SE, Ashcroft AE (2013) Advances in ion mobility spectrometry-mass spectrometry reveal key insights into amyloid assembly. Biochim Biophys Acta 1834(6):1257–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Knapman TW et al (2013) Ion mobility spectrometry-mass spectrometry of intrinsically unfolded proteins: trying to put order into disorder. Curr Anal Chem 9(2):181–191

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jurneczko E et al (2012) Intrinsic disorder in proteins: a challenge for (un)structural biology met by ion mobility-mass spectrometry. Biochem Soc Trans 40(5):1021–1026

    Article  CAS  PubMed  Google Scholar 

  16. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5(12):993–996

    Article  CAS  PubMed  Google Scholar 

  17. Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666(1–2):105–117

    Article  CAS  PubMed  Google Scholar 

  18. Kovari LC, Momany C, Rossmann MG (1995) The use of antibody fragments for crystallization and structure determinations. Structure 3(12):1291–1293

    Article  CAS  PubMed  Google Scholar 

  19. Steyaert J, Kobilka BK (2011) Nanobody stabilization of G protein-coupled receptor conformational states. Curr Opin Struct Biol 21(4):567–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morgner N et al (2007) A novel approach to analyze membrane proteins by laser mass spectrometry: from protein subunits to the integral complex. J Am Soc Mass Spectrom 18(8):1429–1438

    Article  CAS  PubMed  Google Scholar 

  21. Fenn JB et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64–71

    Article  CAS  PubMed  Google Scholar 

  22. Meng CK, Fenn JB (1990) Analyzing organic molecules with electrospray mass spectrometry. Am Biotechnol Lab 8(4):54–60

    CAS  PubMed  Google Scholar 

  23. Mora JF et al (2000) Electrochemical processes in electrospray ionization mass spectrometry. J Mass Spectrom 35(8):939–952

    Article  CAS  PubMed  Google Scholar 

  24. Testa L, Brocca S, Grandori R (2011) Charge-surface correlation in electrospray ionization of folded and unfolded proteins. Anal Chem 83(17):6459–6463

    Article  CAS  PubMed  Google Scholar 

  25. D’Urzo A et al (2015) Molecular basis for structural heterogeneity of an intrinsically disordered protein bound to a partner by combined ESI-IM-MS and modeling. J Am Soc Mass Spectrom 26(3):472–481

    Article  PubMed  Google Scholar 

  26. Barylyuk K et al (2011) What happens to hydrophobic interactions during transfer from the solution to the gas phase? The case of electrospray-based soft ionization methods. J Am Soc Mass Spectrom 22(7):1167–1177

    Article  CAS  PubMed  Google Scholar 

  27. Nemeth-Cawley JF, Rouse JC (2002) Identification and sequencing analysis of intact proteins via collision-induced dissociation and quadrupole time-of-flight mass spectrometry. J Mass Spectrom 37(3):270–282

    Article  CAS  PubMed  Google Scholar 

  28. Lemoine J et al (1993) Collision-induced dissociation of alkali metal cationized and permethylated oligosaccharides: influence of the collision energy and of the collision gas for the assignment of linkage position. J Am Soc Mass Spectrom 4(3):197–203

    Article  CAS  PubMed  Google Scholar 

  29. Benesch JL, Robinson CV (2006) Mass spectrometry of macromolecular assemblies: preservation and dissociation. Curr Opin Struct Biol 16(2):245–251

    Article  CAS  PubMed  Google Scholar 

  30. Pagel K et al (2010) Alternate dissociation pathways identified in charge-reduced protein complex ions. Anal Chem 82(12):5363–5372

    Article  CAS  PubMed  Google Scholar 

  31. Jurchen JC, Williams ER (2003) Origin of asymmetric charge partitioning in the dissociation of gas-phase protein homodimers. J Am Chem Soc 125(9):2817–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Benesch JL et al (2006) Tandem mass spectrometry reveals the quaternary organization of macromolecular assemblies. Chem Biol 13(6):597–605

    Article  CAS  PubMed  Google Scholar 

  33. Lanucara F et al (2014) The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem 6(4):281–294

    Article  CAS  PubMed  Google Scholar 

  34. Smith DP et al (2009) Deciphering drift time measurements from travelling wave ion mobility spectrometry-mass spectrometry studies. Eur J Mass Spectrom (Chichester, Eng) 15(2):113–130

    Article  CAS  Google Scholar 

  35. Bush MF et al (2010) Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal Chem 82(22):9557–9565

    Article  CAS  PubMed  Google Scholar 

  36. Zhong Y, Han L, Ruotolo BT (2014) Collisional and Coulombic unfolding of gas-phase proteins: high correlation to their domain structures in solution. Angew Chem Int Ed Engl 53(35):9209–9212

    Article  CAS  PubMed  Google Scholar 

  37. Hopper JT, Oldham NJ (2009) Collision induced unfolding of protein ions in the gas phase studied by ion mobility-mass spectrometry: the effect of ligand binding on conformational stability. J Am Soc Mass Spectrom 20(10):1851–1858

    Article  CAS  PubMed  Google Scholar 

  38. Laganowsky A et al (2014) Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510(7503):172–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marty MT et al (2016) Probing the lipid Annular Belt by gas-phase dissociation of membrane proteins in Nanodiscs. Angew Chem Int Ed Engl 55(2):550–554

    Article  CAS  PubMed  Google Scholar 

  40. Pan P, McLuckey SA (2003) The effect of small cations on the positive electrospray responses of proteins at low pH. Anal Chem 75(20):5468–5474

    Article  CAS  PubMed  Google Scholar 

  41. Iavarone AT, Udekwu OA, Williams ER (2004) Buffer loading for counteracting metal salt-induced signal suppression in electrospray ionization. Anal Chem 76(14):3944–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hernandez H, Robinson CV (2007) Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat Protoc 2(3):715–726

    Article  CAS  PubMed  Google Scholar 

  43. Hopper JT et al (2013) Detergent-free mass spectrometry of membrane protein complexes. Nat Methods 10(12):1206–1208

    Article  CAS  PubMed  Google Scholar 

  44. Kalipatnapu S, Chattopadhyay A (2005) Membrane protein solubilization: recent advances and challenges in solubilization of serotonin1A receptors. IUBMB Life 57(7):505–512

    Article  CAS  PubMed  Google Scholar 

  45. Laganowsky A et al (2013) Mass spectrometry of intact membrane protein complexes. Nat Protoc 8(4):639–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Borysik AJ, Hewitt DJ, Robinson CV (2013) Detergent release prolongs the lifetime of native-like membrane protein conformations in the gas-phase. J Am Chem Soc 135(16):6078–6083

    Article  CAS  PubMed  Google Scholar 

  47. Dorwart MR et al (2010) S. aureus MscL is a pentamer in vivo but of variable stoichiometries in vitro: implications for detergent-solubilized membrane proteins. PLoS Biol 8(12):e1000555

    Article  PubMed  PubMed Central  Google Scholar 

  48. Konijnenberg A et al (2014) Global structural changes of an ion channel during its gating are followed by ion mobility mass spectrometry. Proc Natl Acad Sci U S A 111(48):17170–17175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reading E et al (2015) The role of the detergent micelle in preserving the structure of membrane proteins in the gas phase. Angew Chem Int Ed Engl 54(15):4577–4581

    Article  CAS  PubMed  Google Scholar 

  50. Reading E et al (2015) The effect of detergent, temperature, and lipid on the Oligomeric state of MscL constructs: insights from mass spectrometry. Chem Biol 22(5):593–603

    Article  CAS  PubMed  Google Scholar 

  51. Wang SC et al (2010) Ion mobility mass spectrometry of two tetrameric membrane protein complexes reveals compact structures and differences in stability and packing. J Am Chem Soc 132(44):15468–15470

    Article  CAS  PubMed  Google Scholar 

  52. Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666(1–2):62–87

    Article  CAS  PubMed  Google Scholar 

  53. Marty MT et al (2012) Native mass spectrometry characterization of intact nanodisc lipoprotein complexes. Anal Chem 84(21):8957–8960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schuler MA, Denisov IG, Sligar SG (2013) Nanodiscs as a new tool to examine lipid-protein interactions. Methods Mol Biol 974:415–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bayburt TH, Sligar SG (2010) Membrane protein assembly into nanodiscs. FEBS Lett 584(9):1721–1727

    Article  CAS  PubMed  Google Scholar 

  56. Ritchie TK et al (2009) Chapter 11 - reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sanders CR, Prosser RS (1998) Bicelles: a model membrane system for all seasons? Structure 6(10):1227–1234

    Article  CAS  PubMed  Google Scholar 

  58. Vold RR, Prosser RS, Deese AJ (1997) Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides. J Biomol NMR 9(3):329–335

    Article  CAS  PubMed  Google Scholar 

  59. Knowles TJ et al (2009) Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J Am Chem Soc 131(22):7484–7485

    Article  CAS  PubMed  Google Scholar 

  60. Calabrese AN et al (2015) Amphipols outperform dodecylmaltoside micelles in stabilizing membrane protein structure in the gas phase. Anal Chem 87(2):1118–1126

    Article  CAS  PubMed  Google Scholar 

  61. Gohon Y et al (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 334(2):318–334

    Article  CAS  PubMed  Google Scholar 

  62. Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68(1):1–8

    Article  CAS  PubMed  Google Scholar 

  63. Sobott F et al (2002) A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal Chem 74(6):1402–1407

    Article  CAS  PubMed  Google Scholar 

  64. Landreh M et al (2015) Controlling release, unfolding and dissociation of membrane protein complexes in the gas phase through collisional cooling. Chem Commun (Camb) 51(85):15582–15584

    Article  CAS  Google Scholar 

  65. Chernushevich IV, Thomson BA (2004) Collisional cooling of large ions in electrospray mass spectrometry. Anal Chem 76(6):1754–1760

    Article  CAS  PubMed  Google Scholar 

  66. Ilag LL et al (2004) Drug binding revealed by tandem mass spectrometry of a protein-micelle complex. J Am Chem Soc 126(44):14362–14363

    Article  CAS  PubMed  Google Scholar 

  67. Lossl P, Snijder J, Heck AJ (2014) Boundaries of mass resolution in native mass spectrometry. J Am Soc Mass Spectrom 25(6):906–917

    Article  PubMed  Google Scholar 

  68. van den Heuvel RH et al (2006) Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. Anal Chem 78(21):7473–7483

    Article  PubMed  Google Scholar 

  69. Michaelevski I, Kirshenbaum N, Sharon M (2010) T-wave ion mobility-mass spectrometry: basic experimental procedures for protein complex analysis. J Vis Exp (41):e1985

    Google Scholar 

  70. Dyachenko A et al (2015) Tandem native mass-spectrometry on antibody-drug conjugates and Submillion da antibody-antigen protein assemblies on an Orbitrap EMR equipped with a high-mass Quadrupole mass selector. Anal Chem 87(12):6095–6102

    Article  CAS  PubMed  Google Scholar 

  71. Rose RJ et al (2012) High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat Methods 9(11):1084–1086

    Article  CAS  PubMed  Google Scholar 

  72. Barrera NP, Zhou M, Robinson CV (2013) The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends Cell Biol 23(1):1–8

    Article  CAS  PubMed  Google Scholar 

  73. Grandori R (2003) Origin of the conformation dependence of protein charge-state distributions in electrospray ionization mass spectrometry. J Mass Spectrom 38(1):11–15

    Article  CAS  PubMed  Google Scholar 

  74. Samalikova M, Grandori R (2003) Role of opposite charges in protein electrospray ionization mass spectrometry. J Mass Spectrom 38(9):941–947

    Article  CAS  PubMed  Google Scholar 

  75. Mehmood S et al (2014) Charge reduction stabilizes intact membrane protein complexes for mass spectrometry. J Am Chem Soc 136(49):17010–17012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Steinberg MZ et al (2007) The dynamics of water evaporation from partially solvated cytochrome c in the gas phase. Phys Chem Chem Phys 9(33):4690–4697

    Article  CAS  PubMed  Google Scholar 

  77. Patriksson A, Marklund E, van der Spoel D (2007) Protein structures under electrospray conditions. Biochemistry 46(4):933–945

    Article  CAS  PubMed  Google Scholar 

  78. Barrera NP et al (2009) Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions. Nat Methods 6(8):585–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Politis A et al (2014) A mass spectrometry-based hybrid method for structural modeling of protein complexes. Nat Methods 11(4):403–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhou M et al (2011) Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding. Science 334(6054):380–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hall Z, Politis A, Robinson CV (2012) Structural modeling of heteromeric protein complexes from disassembly pathways and ion mobility-mass spectrometry. Structure 20(9):1596–1609

    Article  CAS  PubMed  Google Scholar 

  82. Marcoux J et al (2014) Mass spectrometry defines the C-terminal dimerization domain and enables modeling of the structure of full-length OmpA. Structure 22(5):781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Betanzos M et al (2002) A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nat Struct Biol 9(9):704–710

    Article  CAS  PubMed  Google Scholar 

  84. Birkner JP, Poolman B, Kocer A (2012) Hydrophobic gating of mechanosensitive channel of large conductance evidenced by single-subunit resolution. Proc Natl Acad Sci U S A 109(32):12944–12949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bechara C, Robinson CV (2015) Different modes of lipid binding to membrane proteins probed by mass spectrometry. J Am Chem Soc 137(16):5240–5247

    Article  CAS  PubMed  Google Scholar 

  86. Strop P, Brunger AT (2005) Refractive index-based determination of detergent concentration and its application to the study of membrane proteins. Protein Sci 14(8):2207–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Salbo R et al (2012) Traveling-wave ion mobility mass spectrometry of protein complexes: accurate calibrated collision cross-sections of human insulin oligomers. Rapid Commun Mass Spectrom 26(10):1181–1193

    Article  CAS  PubMed  Google Scholar 

  88. Jurneczko E et al (2012) Effects of drift gas on collision cross sections of a protein standard in linear drift tube and traveling wave ion mobility mass spectrometry. Anal Chem 84(20):8524–8531

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Sobott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

van Dyck, J.F., Konijnenberg, A., Sobott, F. (2017). Native Mass Spectrometry for the Characterization of Structure and Interactions of Membrane Proteins. In: Lacapere, JJ. (eds) Membrane Protein Structure and Function Characterization. Methods in Molecular Biology, vol 1635. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7151-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7151-0_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7149-7

  • Online ISBN: 978-1-4939-7151-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics