Skip to main content

RNAi and MicroRNA-Mediated Gene Regulation in Stem Cells

  • Protocol
  • First Online:
RNAi and Small Regulatory RNAs in Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1622))

Abstract

Recently, RNAi and microRNAs (miRNAs) have become important tools to investigate the regulatory mechanism of stem cell maintenance and differentiation. In this short review, we give a brief overview of the discovery history, functions, and mechanisms of RNAi and miRNAs. We also discuss the RNAi as a tool to study the stem cell function and the potential future practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crotty S, Pipkin ME (2015) In vivo RNAi screens: concepts and applications. Trends Immunol 36:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6:3343–3353

    Article  CAS  PubMed  Google Scholar 

  4. Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  5. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  6. Boutla A, Delidakis C, Livadaras I, Tsagris M, Tabler M (2001) Short 5′-phosphorylated double-stranded RNAs induce RNA interference in Drosophila. Curr Biol 11:1776–1780

    Article  CAS  PubMed  Google Scholar 

  7. Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95:1017–1026

    Article  CAS  PubMed  Google Scholar 

  8. Duxbury MS, Whang EE (2004) RNA interference: a practical approach. J Surg Res 117:339–344

    Article  CAS  PubMed  Google Scholar 

  9. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  PubMed  Google Scholar 

  10. Kalantari R, Chiang CM, Corey DR (2016) Regulation of mammalian transcription and splicing by nuclear RNAi. Nucleic Acids Res 44:524–537

    Article  CAS  PubMed  Google Scholar 

  11. Chen S, Choo A, Wang ND, Too HP, Oh SK (2007) Establishing efficient siRNA knockdown in mouse embryonic stem cells. Biotechnol Lett 29:261–265

    Article  CAS  PubMed  Google Scholar 

  12. Ambros V (2003) MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113:673–676

    Article  CAS  PubMed  Google Scholar 

  13. Cerutti H (2003) RNA interference: traveling in the cell and gaining functions? Trends Genet 19:39–46

    Article  CAS  PubMed  Google Scholar 

  14. Shi Y (2003) Mammalian RNAi for the masses. Trends Genet 19:9–12

    Article  PubMed  Google Scholar 

  15. McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747

    Article  CAS  PubMed  Google Scholar 

  16. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  CAS  PubMed  Google Scholar 

  17. Wienholds E, Koudijs MJ, van Eeden FJ, Cuppen E, Plasterk RH (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet 35:217–218

    Article  CAS  PubMed  Google Scholar 

  18. Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8:23–36

    Article  CAS  PubMed  Google Scholar 

  19. Kobayashi H, Tomari Y (2016) RISC assembly: coordination between small RNAs and Argonaute proteins. Biochim Biophys Acta 1859:71–81

    Article  CAS  PubMed  Google Scholar 

  20. Sharp PA, Zamore PD (2000) Molecular biology. RNA interference. Science 287:2431–2433

    Article  CAS  PubMed  Google Scholar 

  21. Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–1150

    Article  CAS  PubMed  Google Scholar 

  22. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  CAS  PubMed  Google Scholar 

  23. Ishizuka A, Siomi MC, Siomi H (2002) A Drosophila Fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 16:2497–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Caudy AA, Ketting RF, Hammond SM, Denli AM, Bathoorn AM, Tops BB, Silva JM, Myers MM, Hannon GJ, Plasterk RH (2003) A micrococcal nuclease homologue in RNAi effector complexes. Nature 425:411–414

    Article  CAS  PubMed  Google Scholar 

  25. Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16:720–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dostie J, Mourelatos Z, Yang M, Sharma A, Dreyfuss G (2003) Numerous microRNPs in neuronal cells containing novel microRNAs. RNA 9:180–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nelson PT, Hatzigeorgiou AG, Mourelatos Z (2004) miRNP:mRNA association in polyribosomes in a human neuronal cell line. RNA 10:387–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN (2006) The role of PACT in the RNA silencing pathway. EMBO J 25:522–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chu CY, Rana TM (2006) Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 4:e210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Carmell MA, Xuan Z, Zhang MQ, Hannon GJ (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16:2733–2742

    Article  CAS  PubMed  Google Scholar 

  32. Sasaki T, Shiohama A, Minoshima S, Shimizu N (2003) Identification of eight members of the Argonaute family in the human genome small star, filled. Genomics 82:323–330

    Article  CAS  PubMed  Google Scholar 

  33. Williams RW, Rubin GM (2002) ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc Natl Acad Sci U S A 99:6889–6894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Okamura K, Ishizuka A, Siomi H, Siomi MC (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18:1655–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Caudy AA, Myers M, Hannon GJ, Hammond SM (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 16:2491–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    Article  CAS  PubMed  Google Scholar 

  37. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574

    Article  CAS  PubMed  Google Scholar 

  39. Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826

    Article  CAS  PubMed  Google Scholar 

  40. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  41. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  42. Zhang BH, Stellwag EJ, Pan XP (2009) Large-scale genome analysis reveals unique features of microRNAs. Gene 443:100–109

    Article  CAS  PubMed  Google Scholar 

  43. Yeom KH, Lee Y, Han J, Suh MR, Kim VN (2006) Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res 34:4622–4629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sibley CR, Seow Y, Saayman S, Dijkstra KK, El Andaloussi S, Weinberg MS, Wood MJ (2012) The biogenesis and characterization of mammalian microRNAs of mirtron origin. Nucleic Acids Res 40:438–448

    Article  CAS  PubMed  Google Scholar 

  45. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95–98

    Article  CAS  PubMed  Google Scholar 

  46. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–640

    Article  CAS  PubMed  Google Scholar 

  47. Gregory RI, Chendrimada TP, Shiekhattar R (2006) MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol Biol 342:33–47

    CAS  PubMed  Google Scholar 

  48. Eulalio A, Behm-Ansmant I, Izaurralde E (2007) P bodies: at the crossroads of post-transcriptional pathways. Nature Rev 8:9–22

    Article  CAS  Google Scholar 

  49. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  50. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene Lin-14 by Lin-4 mediates temporal pattern-formation in C. elegans. Cell 75:855–862

    Article  CAS  PubMed  Google Scholar 

  51. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    Article  CAS  PubMed  Google Scholar 

  52. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  PubMed  Google Scholar 

  53. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  CAS  PubMed  Google Scholar 

  54. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  CAS  PubMed  Google Scholar 

  55. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233

    Article  CAS  PubMed  Google Scholar 

  56. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36

    Article  CAS  PubMed  Google Scholar 

  57. Xu P, Vernooy SY, Guo M, Hay BA (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13:790–795

    Article  CAS  PubMed  Google Scholar 

  58. Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Scharfmann R, Rutter GA, Van Obberghen E (2007) MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 282:19575–19588

    Article  CAS  PubMed  Google Scholar 

  59. Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ (2009) Regulation of epidermal growth factor receptor signaling in human cancer cells by MicroRNA-7. J Biol Chem 284:5731–5741

    Article  CAS  PubMed  Google Scholar 

  60. Zhang BH, Pan XP, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12

    Article  CAS  PubMed  Google Scholar 

  61. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443

    Article  CAS  PubMed  Google Scholar 

  62. Pearson JC, Lemons D, McGinnis W (2005) Modulating Hox gene functions during animal body patterning. Nat Rev Genet 6:893–904

    Article  CAS  PubMed  Google Scholar 

  63. Hammond SM (2006) MicroRNAs as oncogenes. Curr Opin Genet Dev 16:4–9

    Article  CAS  PubMed  Google Scholar 

  64. Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7:911–920

    Article  CAS  PubMed  Google Scholar 

  65. Kim J, Krichevsky A, Grad Y, Hayes GD, Kosik KS, Church GM, Ruvkun G (2004) Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc Natl Acad Sci U S A 101:360–365

    Article  CAS  PubMed  Google Scholar 

  66. Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838

    Article  CAS  PubMed  Google Scholar 

  68. Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5:R68

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ashraf SI, Kunes S (2006) A trace of silence: memory and microRNA at the synapse. Curr Opin Neurobiol 16:535–539

    Article  CAS  PubMed  Google Scholar 

  71. Zhang BH, Pan XP, Anderson TA (2006) MicroRNA: a new player in stem cells. J Cell Physiol 209:266–269

    Article  CAS  PubMed  Google Scholar 

  72. Forstemann K, Tomari Y, Du TT, Vagin VV, Denli AM, Bratu DP, Klattenhoff C, Theurkauf WE, Zamore PD (2005) Normal microRNA maturation and germ-line stem cell maintenance requires loquacious, a double-stranded RNA- binding domain protein. PLoS Biol 3:1187–1201

    Article  CAS  Google Scholar 

  73. Gangaraju VK, Lin HF (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10:116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Greco SJ, Rameshwar P (2007) MicroRNAs regulate synthesis of the neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells. Proc Natl Acad Sci U S A 104:15484–15489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hammond SM, Sharpless NE (2008) HMGA2, MicroRNAs, and stem cell aging. Cell 135:1013–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hatfield S, Ruohola-Baker H (2008) microRNA and stem cell function. Cell Tissue Res 331:57–66

    Article  CAS  PubMed  Google Scholar 

  77. Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H (2005) Stem cell division is regulated by the microRNA pathway. Nature 435:974–978

    Article  CAS  PubMed  Google Scholar 

  78. Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific microRNAs. Dev Cell 5:351–358

    Article  CAS  PubMed  Google Scholar 

  79. Ivey KN, Muth A, Amold J, King FW, Yeh RF, Fish JE, Hsiao EC, Schwartz RJ, Conklin BR, Bernstein HS, Srivastava D (2008) MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2:219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19:489–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Krichevsky AM, Sonntag KC, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24:857–864

    Article  CAS  PubMed  Google Scholar 

  82. Kuwabara T, Hsieh J, Nakashima K, Taira K, Gage FH (2004) A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116:779–793

    Article  CAS  PubMed  Google Scholar 

  83. Lakshmipathy U, Love B, Goff LA, Jornsten R, Graichen R, Hart RP, Chesnut JD (2007) MicroRNA expression pattern of undifferentiated and differentiated human embryonic stem cells. Stem Cells Dev 16:1003–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li QT, Gregory RI (2008) MicroRNA regulation of stem cell fate. Cell Stem Cell 2:195–196

    Article  CAS  PubMed  Google Scholar 

  85. Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci U S A 102:12135–12140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Park JK, Liu X, Strauss TJ, McKearin DM, Liu QH (2007) The miRNA pathway intrinsically controls self-renewal of Drosophila germline stem cells. Curr Biol 17:533–538

    Article  CAS  PubMed  Google Scholar 

  87. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270:488–498

    Article  CAS  PubMed  Google Scholar 

  88. Tang FC, Hajkova P, Barton SC, Lao KQ, Surani MA (2006) MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res 34:e9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R (2008) Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 40:1478–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang YL, Keys DN, Au-Young JK, Chen CF (2009) MicroRNAs in embryonic stem cells. J Cell Physiol 218:251–255

    Article  CAS  PubMed  Google Scholar 

  91. Zou GM, Yoder MC (2005) Application of RNA interference to study stem cell function: current status and future perspectives. Biol Cell 97:211–219

    Article  CAS  PubMed  Google Scholar 

  92. Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG, Johnston WK, Wernig M, Newman J, Calabrese JM, Dennis LM, Volkert TL, Gupta S, Love J, Hannett N, Sharp PA, Bartel DP, Jaenisch R, Young RA (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134:521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mineno J, Okamoto S, Ando T, Sato M, Chono H, Izu H, Takayama M, Asada K, Mirochnitchenko O, Inouye M, Kato I (2006) The expression profile of microRNAs in mouse embryos. Nucleic Acids Res 34:1765–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35:215–217

    Article  CAS  PubMed  Google Scholar 

  95. Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39:380–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9:219–230

    Article  CAS  PubMed  Google Scholar 

  97. Martinez NJ, Gregory RI (2010) MicroRNA gene regulatory pathways in the establishment and maintenance of ESC identity. Cell Stem Cell 7:31–35

    Article  CAS  PubMed  Google Scholar 

  98. Hwang HW, Wentzel EA, Mendell JT (2007) A hexanucleotide element directs microRNA nuclear import. Science 315:97–100

    Article  CAS  PubMed  Google Scholar 

  99. Delaloy C, Liu L, Lee JA, Su H, Shen F, Yang GY, Young WL, Ivey KN, Gao FB (2010) MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell 6:323–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sonntag KC, Woo TU, Krichevsky AM (2012) Converging miRNA functions in diverse brain disorders: a case for miR-124 and miR-126. Exp Neurol 235:427–435

    Article  CAS  PubMed  Google Scholar 

  101. Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P, Filipowicz W (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15:259–267

    Article  CAS  PubMed  Google Scholar 

  102. Velkey JM, O'Shea KS (2003) Oct4 RNA interference induces trophectoderm differentiation in mouse embryonic stem cells. Genesis 37:18–24

    Article  CAS  PubMed  Google Scholar 

  103. Hay DC, Sutherland L, Clark J, Burdon T (2004) Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 22:|225–235

    Article  CAS  PubMed  Google Scholar 

  104. Ui-Tei K, Zenno S, Miyata Y, Saigo K (2000) Sensitive assay of RNA interference in Drosophila and Chinese hamster cultured cells using firefly luciferase gene as target. FEBS Lett 479:79–82

    Article  CAS  PubMed  Google Scholar 

  105. Gil J, Esteban M (2000) Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 5:107–114

    Article  CAS  PubMed  Google Scholar 

  106. Caplen NJ, Mousses S (2003) Short interfering RNA (siRNA)-mediated RNA interference (RNAi) in human cells. Ann N Y Acad Sci 1002:56–62

    Article  CAS  PubMed  Google Scholar 

  107. Michaelson JS, Leder P (2003) RNAi reveals anti-apoptotic and transcriptionally repressive activities of DAXX. J Cell Sci 116:345–352

    Article  CAS  PubMed  Google Scholar 

  108. Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247

    Article  CAS  PubMed  Google Scholar 

  109. Lee JM, Yoon TJ, Cho YS (2013) Recent developments in nanoparticle-based siRNA delivery for cancer therapy. Biomed Res Int 2013:782041

    PubMed  PubMed Central  Google Scholar 

  110. Bobbin ML, Rossi JJ (2016) RNA interference (RNAi)-based therapeutics: delivering on the promise? Annu Rev Pharmacol Toxicol 56:103–122

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander K. Murashov M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Murashov, A.K. (2017). RNAi and MicroRNA-Mediated Gene Regulation in Stem Cells. In: Zhang, B. (eds) RNAi and Small Regulatory RNAs in Stem Cells. Methods in Molecular Biology, vol 1622. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7108-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7108-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7106-0

  • Online ISBN: 978-1-4939-7108-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics