Skip to main content

Testing Antifungal Vaccines in an Animal Model of Invasive Candidiasis and in Human Mucosal Candidiasis

  • Protocol
  • First Online:
Vaccines for Invasive Fungal Infections

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1625))

Abstract

The following article will concentrate on the NDV-3 anti-Candida and Staphylococcus vaccine. The vaccine is composed of the N-terminal portion of the Candida albicans agglutinin-like sequence 3 protein (Als3p) and aluminum hydroxide as adjuvant. The vaccine conferred protection to mice against experimental vaginal, oral, and intravenous challenge with C. albicans. Due to the sequence and structural homology of the Als3p with Staphylococcus aureus surface proteins, the vaccine also protected against experimental skin and IV infection with S. aureus. The vaccine has reached the stage of human trials: phase 1 clinical studies have shown that the vaccine is safe and immunogenic. The latest brief conference abstract reports of vaccination in women suffering from recurrent vaginal candidiasis, indicating that the recurrence rates were lower in the women receiving the vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dye C (2014) After 2015: infectious diseases in a new era of health and development. Phil Trans R Soc B 369:20130426

    Article  PubMed  PubMed Central  Google Scholar 

  2. Murraya KA, Prestonc N, Allend T et al (2015) Global biogeography of human infectious diseases. Proc Natl Acad Sci U S A 112:12746–12751

    Article  Google Scholar 

  3. Europe PMC Funders Group; Author Manuscript (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the global burden of disease study. Lancet 385:117–171

    Article  Google Scholar 

  4. Drouhet E (1998) Historical introduction: evolution of knowledge of the fungi and mycoses from Hipocrates to the twenty- first century. In: Ajello L, Hay R (eds) Topley & Wilson’s microbiology and microbial infections, Medical mycology, vol 4, 9th edn. Arnold, London, pp 3–42

    Google Scholar 

  5. Edwards J (2015) Candida species. In: Mandell, Douglas and Bennett’s principles and practice of infectious diseases, 8th edn. Saunders, Philadelphia, pp 2879–2894

    Google Scholar 

  6. Segal E, Elad D (2005) Candidiasis. In: Merz WG, Hay RJ (eds) Topley &Wilson's Microbiology & Microbial Infections, Medical mycology, vol 5, 10th edn. ASM, Washington, DC, pp 579–623

    Google Scholar 

  7. Richardson MD, Warnock DW (2012) Superficial candidosis. In: Fungal infection diagnosis and management, 4th edn. Blackwell Publishing Ltd, Chichester, pp 121–137

    Google Scholar 

  8. Wisplinghoff H, Bischoff T, Tallent SM et al (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317

    Article  PubMed  Google Scholar 

  9. Wisplinghoff H, Seifert H, Wenzel RP et al (2003) Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin Infect Dis 36:1103–1110

    Article  PubMed  Google Scholar 

  10. Bailly S, Leroy O, Montravers P et al (2015) Antifungal de-escalation was not associated with adverse outcome in critically ill patients treated for invasive candidiasis: post hoc analyses of the AmarCAND2 study data. Intensive Care Med 41:1931–1940

    Article  CAS  PubMed  Google Scholar 

  11. Segal E, Elad D (2006) Fungal vaccines and immunotherapy. J Med Mycol 16:134–151

    Article  Google Scholar 

  12. Levy R, Segal E, Eylan E (1981) Protective immunity against murine candidiasis elicited by Candida albicans ribosomal fractions. Infect Immun 31:874–878

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Levy R, Segal E (1986) Induction of candidacidal activity in mice by immunization with Candida albicans ribosomes. FEMS Microbiol Lett 36:213–217

    Article  CAS  Google Scholar 

  14. Segal E, Sandovsky-Losica H (1981) Experimental vaccination with Candida albicans ribosomes in cyclophosphamide treated animals. Sabouraudia 19:267–274

    Article  CAS  PubMed  Google Scholar 

  15. Segal E, Spongin A, Levy R et al (1987) Induction of protection against candidiasis in tumor bearing mice by vaccination with Candida albicans ribosomes. J Med Vet Mycol 25:355–363

    Article  CAS  PubMed  Google Scholar 

  16. Segal E, Nussbaum S, Barr-Nea L (1985) Protection against systemic infections with various Candida species elicited by vaccination with Candida albicans ribosomes. J Med Vet Mycol 235:275–285

    Article  Google Scholar 

  17. Levy R, Segal E, Eylan E (1984) Detection of antibodies against Candida albicans ribosomes by the enzyme linked immunosorbent assay. Mycopathologia 87:167–170

    Article  CAS  PubMed  Google Scholar 

  18. Levy R, Segal E, Eylan E et al (1983) Cell-mediated immunity following experimental vaccinations with Candida albicans ribosomes. Mycopathologia 83:161–168

    Article  CAS  PubMed  Google Scholar 

  19. Segal E, Sandovsky-Losica H, Nussbaum S (1985) Immune responses elicited by Candida albicans ribosomes in cyclophosphamide treated animals. Mycopathologia 89:113–118

    Article  CAS  PubMed  Google Scholar 

  20. Eckstein M, Barenholz Y, Bar LK, Segal E (1997) Liposomes containing Candida albicans ribosomes as a prophylactic vaccine against disseminated candidiasis in mice. Vaccine 15:220–224

    Article  CAS  PubMed  Google Scholar 

  21. Edwards JE (2012) Fungal cell wall vaccines: an update. J Med Microbiol 61:895–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ibrahim AS, Spellberg BJ, Avanesian V et al (2005) Vaccination with recombinant N-terminal domain of Als1p improves survival during murine disseminated candidiasis by enhancing cell-mediated, not humoral, immunity. Infect Immun 73:999–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ibrahim AS, Spellberg BJ, Avanesian V et al (2006) The anti-Candida vaccine based on the recombinant N-terminal domain of Als1p is broadly active against disseminated candidiasis. Infect Immun 74:3039–3041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spellberg BJ, Ibrahim AS, Avenissian V et al (2005) The anti-Candida albicans vaccine composed of the recombinant N terminus of Als1p reduces fungal burden and improves survival in both immunocompetent and immunocompromised mice. Infect Immun 73:6191–6193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ibrahim AS, Gebremariam LG, Lee H et al (2013) NDV-3 protects mice from vulvovaginal candidiasis through T- and B-cell immune response. Vaccine 31:5549–5556

    Article  CAS  PubMed  Google Scholar 

  26. Luo G, Ibrahim AS, French SW et al (2011) Active and passive immunization with rHyr1p-N protects mice against hematogenously disseminated candidiasis. PLoS One 6:e25909. doi:10.1371/journal.pone.0025909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin L, Ibrahim AS, Xu X et al (2009) Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog 5(12):e1000703. doi:10.1371/journal.ppat.1000703

    Article  PubMed  PubMed Central  Google Scholar 

  28. Spellberg B, Ibrahim AS, Yeaman MR et al (2008) The antifungal vaccine derived from the recombinant N terminus of Als3p protects mice against the bacterium Staphylococcus aureus. Infect Immun 76:4574–4580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schmidt CS, White CJ, Ibrahim AS et al (2012) NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults. Vaccine 30:7594–7600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Edwards JE, Schwarz MW, Schmidt, CS et al (2016) NDV-3A vaccine reduces recurrences of vaginitis in patients with recurrent vulvovaginal candidiasis. ASM Conference on “Candida and Candidiasis”

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Segal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Segal, E. (2017). Testing Antifungal Vaccines in an Animal Model of Invasive Candidiasis and in Human Mucosal Candidiasis. In: Kalkum, M., Semis, M. (eds) Vaccines for Invasive Fungal Infections. Methods in Molecular Biology, vol 1625. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7104-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7104-6_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7103-9

  • Online ISBN: 978-1-4939-7104-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics