Skip to main content

MicroRNA Expression: Protein Participants in MicroRNA Regulation

  • Protocol
  • First Online:
Bioinformatics in MicroRNA Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1617))

Abstract

MiRNAs are ~20 nt small RNAs that regulate networks of proteins using a seed region of nucleotides 2–8 to complement the 3′ UTR of target mRNAs. The biogenesis and function of miRNAs as translational repressors is facilitated by protein counterparts that process primary and precursor miRNAs to maturity (Drosha/DCGR8 and Dicer/TRBP respectively) and incorporate miRNAs into the protein complex RISC to recognize and repress target mRNAs (RISC proteins: Ago/TRBP1/TRBP2/DICER). Similarly, siRNAs through comparable mechanisms are loaded into the protein complex RITS to heterochromatin formation of DNA and suppress transcription of particular genes. MiRNAs are also regulated themselves through many different pathways including transcriptional regulation, post-transcriptional RNA editing, and RNA tailing. Dysregulation of miRNAs and the protein participants that mature them are implicated in the development of a number of diseases, tumorigenesis, and arrested development of embryonic cells. In this chapter, we will explore the biosynthesis, function, and regulation of miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graves P, Zeng Y (2012) Biogenesis of mammalian microRNAs: a global view. Genomics Proteomics Bioinformatics 10:239–245. doi:10.1016/j.gpb.2012.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524. doi:10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  3. Krützfeldt J, Stoffel M (2006) MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab 4:9–12. doi:10.1016/j.cmet.2006.05.009

    Article  PubMed  Google Scholar 

  4. Nakahara K, Carthew RW (2004) Expanding roles for miRNAs and siRNAs in cell regulation. Curr Opin Cell Biol 16:127–133. doi:10.1016/j.ceb.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  5. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854. doi:10.1016/0092-8674(93)90529-Y

    Article  CAS  PubMed  Google Scholar 

  6. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864. doi:10.1126/science.1065329

    Article  CAS  PubMed  Google Scholar 

  7. miRBase. http://www.mirbase.org/index.shtml. Accessed 11 Oct 2015

  8. Li M, Marin-Muller C, Bharadwaj U et al (2009) MicroRNAs: control and loss of control in human physiology and disease. World J Surg 33:667–684. doi:10.1007/s00268-008-9836-x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yue S-B, Trujillo RD, Tang Y et al (2011) Loop nucleotides control primary and mature miRNA function in target recognition and repression. RNA Biol 8:1115–1123. doi:10.4161/rna.8.6.17626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roberts JT, Cooper EA, Favreau CJ et al (2013) Continuing analysis of microRNA origins: formation from transposable element insertions and noncoding RNA mutations. Mob Genet Elements 3:e27755. doi:10.4161/mge.27755

    Article  PubMed  Google Scholar 

  11. Roberts JT, Cardin SE, Borchert GM (2014) Burgeoning evidence indicates that microRNAs were initially formed from transposable element sequences. Mob Genet Elements 4:e29255. doi:10.4161/mge.29255

    Article  PubMed  PubMed Central  Google Scholar 

  12. Filshtein TJ, Mackenzie CO, Dale MD et al (2012) OrbId: origin-based identification of microRNA targets. Mob Genet Elements 2:184–192. doi:10.4161/mge.21617

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kobayashi H, Tomari Y (2015) RISC assembly: coordination between small RNAs and Argonaute proteins. Biochim Biophys Acta. doi:10.1016/j.bbagrm.2015.08.007

    Google Scholar 

  14. Ouellet DL, Perron MP, Gobeil L-A, Plante P, Provost P (2006) MicroRNAs in gene regulation: when the smallest governs it all. J Biomed Biotechnol 2006:20. doi:10.1155/JBB/2006/69616

    Article  Google Scholar 

  15. Parker GS, Maity TS, Bass BL (2008) dsRNA binding properties of RDE-4 and TRBP reflect their distinct roles in RNAi. J Mol Biol 384:967–979. doi:10.1016/j.jmb.2008.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bahubeshi A, Tischkowitz M, Foulkes WD (2011) miRNA processing and human cancer: DICER1 cuts the mustard. Sci Transl Med 3:111ps46. doi:10.1126/scitranslmed.3002493

    Article  PubMed  Google Scholar 

  17. Agrawal N, Dasaradhi PVN, Mohmmed A et al (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67:657–685. doi:10.1128/MMBR.67.4.657-685.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krol J, Busskamp V, Markiewicz I et al (2010) Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell 141:618–631. doi:10.1016/j.cell.2010.03.039

    Article  CAS  PubMed  Google Scholar 

  19. Zhang B, Wang Q, Pan X (2007) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210:279–289. doi:10.1002/jcp.20869

    Article  CAS  PubMed  Google Scholar 

  20. Verdel A, Jia S, Gerber S et al (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303:672–676. doi:10.1126/science.1093686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lam JKW, Chow MYT, Zhang Y, Leung SWS (2015) siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 4:e252. doi:10.1038/mtna.2015.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ivanova AV, Bonaduce MJ, Ivanov SV, Klar AJ (1998) The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast. Nat Genet 19:192–195. doi:10.1038/566

    Article  CAS  PubMed  Google Scholar 

  23. Cai Y, Yu X, Hu S, Yu J (2009) A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics 7:147–154. doi:10.1016/S1672-0229(08)60044-3

    Article  CAS  PubMed  Google Scholar 

  24. Lee C-T, Risom T, Strauss WM (2006) MicroRNAs in mammalian development. Birth Defects Res C Embryo Today 78:129–139. doi:10.1002/bdrc.20072

    Article  CAS  PubMed  Google Scholar 

  25. Xhemalce B, Robson SC, Kouzarides T (2012) Human RNA methyltransferase BCDIN3D regulates microRNA processing. Cell 151:278–288. doi:10.1016/j.cell.2012.08.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. He X-X, Kuang S-Z, Liao J-Z et al (2015) The regulation of microRNA expression by DNA methylation in hepatocellular carcinoma. Mol Biosyst 11:532–539. doi:10.1039/C4MB00563E

    Article  CAS  PubMed  Google Scholar 

  27. Schanen BC, Li X (2011) Transcriptional regulation of mammalian miRNA genes. Genomics 97:1–6. doi:10.1016/j.ygeno.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  28. Boyer LA, Lee TI, Cole MF et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956. doi:10.1016/j.cell.2005.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marson A, Levine SS, Cole MF et al (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134:521–533. doi:10.1016/j.cell.2008.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kanellopoulou C (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19:489–501. doi:10.1101/gad.1248505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun G, Yan J, Noltner K et al (2009) SNPs in human miRNA genes affect biogenesis and function. RNA 15:1640–1651. doi:10.1261/rna.1560209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee YS, Nakahara K, Pham JW et al (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81. doi:10.1016/S0092-8674(04)00261-2

    Article  CAS  PubMed  Google Scholar 

  33. Yang W, Chendrimada TP, Wang Q et al (2005) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13:13–21. doi:10.1038/nsmb1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blow MJ, Grocock RJ, van Dongen S et al (2006) RNA editing of human microRNAs. Genome Biol 7:R27. doi:10.1186/gb-2006-7-4-r27

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14:475–488. doi:10.1038/nrm3611

    Article  CAS  PubMed  Google Scholar 

  36. Pasquinelli AE, Reinhart BJ, Slack F et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89. doi:10.1038/35040556

    Article  CAS  PubMed  Google Scholar 

  37. Suh M-R, Lee Y, Kim JY et al (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270:488–498. doi:10.1016/j.ydbio.2004.02.019

    Article  CAS  PubMed  Google Scholar 

  38. Katoh T, Sakaguchi Y, Miyauchi K et al (2009) Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev 23:433–438. doi:10.1101/gad.1761509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Backes S, Shapiro JS, Sabin LR et al (2012) Degradation of host MicroRNAs by poxvirus poly(A) polymerase reveals terminal RNA methylation as a protective antiviral mechanism. Cell Host Microbe 12:200–210. doi:10.1016/j.chom.2012.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chatterjee S, Fasler M, Büssing I, Grosshans H (2011) Target-mediated protection of endogenous microRNAs in C. elegans. Dev Cell 20:388–396. doi:10.1016/j.devcel.2011.02.008

    Article  CAS  PubMed  Google Scholar 

  41. Rüegger S, Großhans H (2012) MicroRNA turnover: when, how, and why. Trends Biochem Sci 37:436–446. doi:10.1016/j.tibs.2012.07.002

    Article  PubMed  Google Scholar 

  42. Ramachandran V, Chen X (2008) Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321:1490–1492. doi:10.1126/science.1163728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Suzuki HI, Arase M, Matsuyama H et al (2011) MCPIP1 ribonuclease antagonizes dicer and terminates MicroRNA biogenesis through precursor microRNA degradation. Mol Cell 44:424–436. doi:10.1016/j.molcel.2011.09.012

    Article  CAS  PubMed  Google Scholar 

  44. Cazalla D, Yario T, Steitz JA (2010) Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328:1563–1566. doi:10.1126/science.1187197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee S, Song J, Kim S et al (2013) Selective degradation of host MicroRNAs by an intergenic HCMV noncoding RNA accelerates virus production. Cell Host Microbe 13:678–690. doi:10.1016/j.chom.2013.05.007

    Article  CAS  PubMed  Google Scholar 

  46. Cesana M, Cacchiarelli D, Legnini I et al (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369. doi:10.1016/j.cell.2011.09.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Patterson D (2015) A significant percentage of small nucleolar RNAs are processed into microRNAs. Univeraity of South Alabama

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen M. Borchert Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

King, V.M., Borchert, G.M. (2017). MicroRNA Expression: Protein Participants in MicroRNA Regulation. In: Huang, J., et al. Bioinformatics in MicroRNA Research. Methods in Molecular Biology, vol 1617. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7046-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7046-9_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7044-5

  • Online ISBN: 978-1-4939-7046-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics