Skip to main content

Next-Generation Sequencing for MicroRNA Expression Profile

  • Protocol
  • First Online:
Bioinformatics in MicroRNA Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1617))

Abstract

Sequencing technologies have made considerable advancements. From the Sanger sequencing method to the next-generation sequencing (NGS) methods, and from the NGS methods to the third-generation sequencing methods, we can see the development thread of the sequencing technology. Currently, NGS is the main contender in the sequencing market. NGS technologies provide an opportunity to research the microRNA (miRNA) expression profiles in detail. The NGS platforms have their own special characteristics, but share some main ideas. DNA sequencing via NGS is fundamental for RNA sequencing and miRNA sequencing. MiRNA sequencing has special characteristics. The pipeline of miRNA sequencing by NGS is explained in detail from the wet experiment to the dry experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willenbrock H, Salomon J, Sokilde R, Barken KB, Hansen TN, Nielsen FC, Moller S, Litman T (2009) Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing. RNA 15(11):2028–2034. doi:10.1261/rna.1699809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, Bertone P, Caldas C (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16(5):991–1006. doi:10.1261/rna.1947110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mestdagh P, Hartmann N, Baeriswyl L, Andreasen D, Bernard N, Chen C, Cheo D, D'Andrade P, DeMayo M, Dennis L (2014) Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods 11(8):809–815

    Article  CAS  PubMed  Google Scholar 

  4. Schuster SC (2007) Next-generation sequencing transforms today’s biology. Nature 200(8):16–18

    Google Scholar 

  5. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24(3):133–141

    Article  CAS  PubMed  Google Scholar 

  6. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92(5):255–264

    Article  CAS  PubMed  Google Scholar 

  7. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46

    Article  CAS  PubMed  Google Scholar 

  8. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145

    Article  CAS  PubMed  Google Scholar 

  9. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26(10):1117–1124

    Article  CAS  PubMed  Google Scholar 

  11. Taylor KH, Kramer RS, Davis JW, Guo J, Duff DJ, Xu D, Caldwell CW, Shi H (2007) Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res 67(18):8511–8518

    Article  CAS  PubMed  Google Scholar 

  12. Wicker T, Schlagenhauf E, Graner A, Close TJ, Keller B, Stein N (2006) 454 sequencing put to the test using the complex genome of barley. BMC Genomics 7(1):275

    Article  PubMed Central  PubMed  Google Scholar 

  13. Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, Turner DJ (2008) A large genome center’s improvements to the Illumina sequencing system. Nat Methods 5(12):1005–1010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13(1):341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Merriman B, Torrent I, Rothberg JM, Team D (2012) Progress in ion torrent semiconductor chip based sequencing. Electrophoresis 33(23):3397–3417

    Article  CAS  PubMed  Google Scholar 

  16. Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. Biomed Res Int 2012:251364

    Google Scholar 

  17. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138. doi:10.1126/science.1162986

    Article  CAS  PubMed  Google Scholar 

  18. Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, Causey M, Colonell J, Dimeo J, Efcavitch JW, Giladi E, Gill J, Healy J, Jarosz M, Lapen D, Moulton K, Quake SR, Steinmann K, Thayer E, Tyurina A, Ward R, Weiss H, Xie Z (2008) Single-molecule DNA sequencing of a viral genome. Science 320(5872):106–109. doi:10.1126/science.1150427

    Article  CAS  PubMed  Google Scholar 

  19. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270. doi:10.1038/nnano.2009.12

    Article  CAS  PubMed  Google Scholar 

  20. Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12(2):87–98

    Article  CAS  PubMed  Google Scholar 

  21. Auer PL, Doerge R (2010) Statistical design and analysis of RNA sequencing data. Genetics 185(2):405–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12(10):671–682

    Article  CAS  PubMed  Google Scholar 

  24. Friedländer MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26(4):407–415

    Article  PubMed  Google Scholar 

  25. Creighton CJ, Reid JG, Gunaratne PH (2009) Expression profiling of microRNAs by deep sequencing. Brief Bioinform 10(5):490–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bar M, Wyman SK, Fritz BR, Qi J, Garg KS, Parkin RK, Kroh EM, Bendoraite A, Mitchell PS, Nelson AM (2008) MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells 26(10):2496–2505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(suppl 1):D140–D144

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z (2010) PMRD: plant microRNA database. Nucleic Acids Res 38(suppl 1):D806–D813

    Article  CAS  PubMed  Google Scholar 

  29. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: an RNA family database. Nucleic Acids Res 31(1):439–441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR (2009) Rfam: updates to the RNA families database. Nucleic Acids Res 37(suppl 1):D136–D140

    Article  CAS  PubMed  Google Scholar 

  31. Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40(1):37–52

    Article  PubMed  Google Scholar 

  32. Moxon S, Schwach F, Dalmay T, MacLean D, Studholme DJ, Moulton V (2008) A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics 24(19):2252–2253

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Lan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hu, Y., Lan, W., Miller, D. (2017). Next-Generation Sequencing for MicroRNA Expression Profile. In: Huang, J., et al. Bioinformatics in MicroRNA Research. Methods in Molecular Biology, vol 1617. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7046-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7046-9_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7044-5

  • Online ISBN: 978-1-4939-7046-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics