Skip to main content

In Vivo and In Vitro Protein–Peptidoglycan Interactions

  • Protocol
  • First Online:
Bacterial Protein Secretion Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1615))

Abstract

Bacteria have developed a number of trans-envelope systems to transport molecules or assemble organelles across bacterial envelopes. However, bacterial envelopes contain a rigid netlike peptidoglycan structure that protects cells from osmotic lysis. Trans-envelope systems thus must interact with the peptidoglycan barrier to generate gaps or anchor structures to the peptidoglycan scaffold. Here we describe methods to use in vivo cross-linking and in vitro co-sedimentation to study protein–peptidoglycan interactions in Gram-negative bacteria. In particular, we address important considerations to ensure the specificity of the interactions in question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Höltje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203

    PubMed  PubMed Central  Google Scholar 

  2. Dijkstra AJ, Keck W (1996) Peptidoglycan as a barrier to transenvelope transport. J Bacteriol 178:5555–5562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scheurwater EM, Burrows LL (2011) Maintaining network security: how macromolecular structures cross the peptidoglycan layer. FEMS Microbiol Lett 318:1–9

    Article  CAS  PubMed  Google Scholar 

  4. Howard SP, Gebhart C, Langen GR, Li G, Strozen TG (2006) Interactions between peptidoglycan and the ExeAB complex during assembly of the type II secretin of Aeromonas hydrophila. Mol Microbiol 59:1062–1072

    Article  CAS  PubMed  Google Scholar 

  5. Glauner B (1988) Separation and quantification of muropeptides with high-performance liquid chromatography. Anal Biochem 172:451–464

    Article  CAS  PubMed  Google Scholar 

  6. Li G, Howard SP (2010) ExeA binds to peptidoglycan and forms a multimer for assembly of the type II secretion apparatus of Aeromonas hydrophila. Mol Microbiol 76:772–781

    Article  CAS  PubMed  Google Scholar 

  7. Hoijer MA, Melief MJ, van Helden-Meeuwsen CG, Eulderink F, Hazenberg MP (1995) Detection of muramic acid in a carbohydrate fraction of human spleen. Infect Immun 63:1652–1657

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Typas A, Banzhaf M, Gross CA, Vollmer W (2011) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10:123–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clarke AJ (1993) Compositional analysis of peptidoglycan by high-performance anion-exchange chromatography. Anal Biochem 212:344–350

    Article  CAS  PubMed  Google Scholar 

  10. Sulfuric Acid (2015) The Columbia Encyclopedia, 6th edn. http:// www.encyclopedia.com. Accessed 26 Jan 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Peter Howard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Li, G., Peter Howard, S. (2017). In Vivo and In Vitro Protein–Peptidoglycan Interactions. In: Journet, L., Cascales, E. (eds) Bacterial Protein Secretion Systems. Methods in Molecular Biology, vol 1615. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7033-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7033-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7031-5

  • Online ISBN: 978-1-4939-7033-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics