Skip to main content

Zn(II)–Phos-Tag SDS-PAGE for Separation and Detection of a DNA Damage-Related Signaling Large Phosphoprotein

  • Protocol
  • First Online:
ATM Kinase

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1599))

Abstract

In this chapter, we provide a standard protocol for phosphate-affinity sodium dodecyl sulfate–polyacrylamide gel electrophoresis (Zn2+–Phos-tag SDS-PAGE). This technique uses a dizinc(II) complex of the phosphate-binding molecule Phos-tag in conjunction with a neutral-pH gel system, Tris [tris(hydroxymethyl)aminomethane], and acetic acid (Tris–AcOH), to detect shifts in the mobility of phosphorylated ataxia telangiectasia-mutated (ATM) kinase. This protocol, which employs a 3% (w/v) polyacrylamide gel strengthened with 0.5% (w/v) agarose, permits the separation of larger phosphoproteins with molecular masses in the order of 200 kDa over a period of approximately 4 h. Subsequently, multiple phosphorylated forms of high-molecular-mass ATM kinase (350 kDa) can be clearly detected via immunoblotting as multiple upshifted migration bands on the Zn2+–Phos-tag SDS-PAGE gel. The procedure described in this protocol requires a completion time of approximately 5 h from the beginning of gel preparation to the end of electrophoresis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kinoshita E, Takahashi M, Takeda H et al (2004) Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc(II) complex. Dalton Trans 1189–1193. http://pubs.rsc.org/en/Content/ArticleLanding/2004/DT/b400269e#!divAbstract

  2. Kinoshita E, Kinoshita-Kikuta E, Takiyama K et al (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5:749–757

    Article  CAS  PubMed  Google Scholar 

  3. Kinoshita-Kikuta E, Aoki Y, Kinoshita E et al (2007) Label-free kinase profiling using phosphate affinity polyacrylamide gel electrophoresis. Mol Cell Proteomics 6:356–366

    Article  CAS  PubMed  Google Scholar 

  4. Kinoshita E, Kinoshita-Kikuta E, Matsubara M et al (2008) Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate-affinity SDS-PAGE. Proteomics 8:2994–3003

    Article  CAS  PubMed  Google Scholar 

  5. Kinoshita E, Kinoshita-Kikuta E, Matsubara M et al (2009) Two-dimensional phosphate-affinity gel electrophoresis for the analysis of phosphoprotein isotypes. Electrophoresis 30:550–559

    Article  CAS  PubMed  Google Scholar 

  6. Kinoshita E, Kinoshita-Kikuta E, Ujihara H et al (2009) Mobility shift detection of phosphorylation on large proteins using a Phos-tag SDS-PAGE gel strengthened with agarose. Proteomics 9:4098–4101

    Article  CAS  PubMed  Google Scholar 

  7. Kinoshita E, Kinoshita-Kikuta E, Koike T (2009) Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat Protoc 4:1513–1521

    Article  CAS  PubMed  Google Scholar 

  8. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  9. Kinoshita E, Kinoshita-Kikuta E, Koike T (2009) Phosphate-affinity gel electrophoresis using a Phos-tag molecule for phosphoproteome study. Curr Proteomics 6:104–121

    Article  CAS  Google Scholar 

  10. Yamada S, Nakamura H, Kinoshita E et al (2007) Separation of a phosphorylated histidine protein using phosphate affinity polyacrylamide gel electrophoresis. Anal Biochem 360:160–162

    Article  CAS  PubMed  Google Scholar 

  11. Sugiyama M, Sugiyama Y, Hatano N et al (2010) The DNA-binding activity of mouse DNA methyltransferase 1 is regulated by phosphorylation with casein kinase 1δ/ε. Biochem J 427:489–497

    Article  CAS  PubMed  Google Scholar 

  12. Ishiai M, Kitao H, Smogorzewska A et al (2008) FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat Struct Mol Biol 15:1138–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kinoshita E, Kinoshita-Kikuta E (2011) Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling. Proteomics 11:319–323

    Article  CAS  PubMed  Google Scholar 

  14. Kinoshita E, Kinoshita-Kikuta E, Koike T (2012) Phos-tag SDS-PAGE systems for phosphorylation profiling of proteins with a wide range of molecular masses under neutral pH conditions. Proteomics 12:192–202

    Article  CAS  PubMed  Google Scholar 

  15. Kinoshita-Kikuta E, Kinoshita E, Koike T (2012) Separation and identification of four distinct serine-phosphorylation states of ovalbumin by Phos-tag affinity electrophoresis. Electrophoresis 33:849–855

    Article  CAS  PubMed  Google Scholar 

  16. Kinoshita E, Kinoshita-Kikuta E, Shiba A et al (2014) Profiling of protein thiophosphorylation by Phos-tag affinity electrophoresis: evaluation of adenosine 5′-O-(3-thiotriphosphate) as a phosphoryl donor in protein kinase reactions. Proteomics 14:668–679

    Article  CAS  PubMed  Google Scholar 

  17. Kinoshita-Kikuta E, Kinoshita E, Eguchi Y et al (2015) Functional characterization of the receiver domain for phosphorelay Ccntrol in hybrid sensor kinases. PLoS One 10:e0132598

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kinoshita-Kikuta E, Kinoshita E, Eguchi Y et al (2016) Validation of cis and trans modes in multistep phosphotransfer signaling of bacterial tripartite sensor kinases by using Phos-tag SDS-PAGE. PLoS One 11:e0148294

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sepulveda P, Binner JGP (2001) Persulfate–amine initiation systems for gelcasting of ceramic foams. Chem Mater 13:4065–4070

    Article  CAS  Google Scholar 

  20. Kinoshita-Kikuta E, Kinoshita E, Matsuda A et al (2014) Tips on improving the efficiency of electrotransfer of target proteins from Phos-tag SDS-PAGE gel. Proteomics 14:2437–2442

    Article  CAS  PubMed  Google Scholar 

  21. Kozlov SV, Graham ME, Peng C et al (2006) Involvement of novel autophosphorylation sites in ATM activation. EMBO J 25:3504–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kozlov SV, Graham ME, Jakob B et al (2011) Autophosphorylation and ATM activation: additional sites add to the complexity. J Biol Chem 286:9107–9119

    Article  CAS  PubMed  Google Scholar 

  23. Kinoshita-Kikuta E, Kinoshita E, Koike T (2012) A laborsaving, timesaving, and more reliable strategy for separation of low-molecular-mass phosphoproteins in Phos-tag affinity electrophoresis. Int J Chem (Mumbai, India) 4(5):1–8

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by KAKENHI Grant no. 25293005 to EK, no. 25560417 to EK, no. 15K07887 to EK-K, and no. 26460036 to TK, and by research grants from the Takeda Science Foundation to EK and EK-K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Kinoshita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kinoshita, E., Kinoshita-Kikuta, E., Koike, T. (2017). Zn(II)–Phos-Tag SDS-PAGE for Separation and Detection of a DNA Damage-Related Signaling Large Phosphoprotein. In: Kozlov, S. (eds) ATM Kinase. Methods in Molecular Biology, vol 1599. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6955-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6955-5_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6953-1

  • Online ISBN: 978-1-4939-6955-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics