Skip to main content

Ion-Mobility Mass Spectrometry for Lipidomics Applications

  • Protocol
  • First Online:
Lipidomics

Part of the book series: Neuromethods ((NM,volume 125))

Abstract

Among lipidomics’ major challenges, there is the molecular complexity of the lipidome. State-of-the-art technology, such as ion mobility (IM) spectrometry, is a promising new tool for supporting lipidomics research. IM is a gas-phase electrophoretic technique that enables the separation of ions in the gas phase according to their charge, shape, and size. IM separation, which occurs on a time scale of milliseconds, is compatible with modern mass spectrometers with microsecond scan speeds. Thus, IM-mass spectrometry (MS) can be integrated into conventional lipidomics MS workflows to improve separation and enhance peak capacity, spectral clarity, and fragmentation specificity. Furthermore, IM allows for the determination of the collision cross section (CCS), an orthogonal physicochemical measure that can be used, together with accurate mass and fragmentation information, to increase the confidence of lipid identification. In recent years, the expanding sophistication of hardware and software products has enabled IM-MS to perform an increasingly important role in traditional lipidomic approaches. In this chapter, we present IM-MS procedures for lipidomics research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, Spener F, van Meer G, Wakelam MJ, Dennis EA (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50(Suppl)S9–14. doi:10.1194/jlr.R800095-JLR200

    PubMed  PubMed Central  Google Scholar 

  2. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, Bandyopadhyay S, Jones KN, Kelly S, Shaner RL, Sullards CM, Wang E, Murphy RC, Barkley RM, Leiker TJ, Raetz CR, Guan Z, Laird GM, Six DA, Russell DW, McDonald JG, Subramaniam S, Fahy E, Dennis EA (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51(11)3299–3305. doi:10.1194/jlr.M009449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Quehenberger O, Dennis EA (2011) The human plasma lipidome. N Engl J Med 365(19)1812–1823. doi:10.1056/NEJMra1104901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4(7)594–610. doi:10.1038/nrd1776

    Article  CAS  PubMed  Google Scholar 

  5. Witting M, Maier TV, Garvis S, Schmitt-Kopplin P (2014) Optimizing a ultrahigh pressure liquid chromatography-time of flight-mass spectrometry approach using a novel sub-2mum core-shell particle for in depth lipidomic profiling of Caenorhabditis elegans. J Chromatogr A 1359:91–99. doi:10.1016/j.chroma.2014.07.021

    Article  CAS  PubMed  Google Scholar 

  6. Brown HA, Murphy RC (2009) Working towards an exegesis for lipids in biology. Nat Chem Biol 5(9)602–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shevchenko A, Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 11(8)593–598. doi:10.1038/nrm2934

    Article  CAS  PubMed  Google Scholar 

  8. Shah V, Castro-Perez JM, McLaren DG, Herath KB, Previs SF, Roddy TP (2013) Enhanced data-independent analysis of lipids using ion mobility-TOFMS(E) to unravel quantitative and qualitative information in human plasma. Rapid Commun Mass Spectrom: RCM 27(19)2195–2200. doi:10.1002/rcm.6675

    Article  CAS  PubMed  Google Scholar 

  9. Hart PJ, Francese S, Claude E, Woodroofe MN, Clench MR (2011) MALDI-MS imaging of lipids in ex vivo human skin. Anal Bioanal Chem 401(1)115–125. doi:10.1007/s00216-011-5090-4

    Article  CAS  PubMed  Google Scholar 

  10. Damen CW, Isaac G, Langridge J, Hankemeier T, Vreeken RJ (2014) Enhanced lipid isomer separation in human plasma using reversed-phase UPLC with ion-mobility/high-resolution MS detection. J Lipid Res 55(8)1772–1783. doi:10.1194/jlr.D047795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim HI, Kim H, Pang ES, Ryu EK, Beegle LW, Loo JA, Goddard WA, Kanik I (2009) Structural characterization of unsaturated phosphatidylcholines using traveling wave ion mobility spectrometry. Anal Chem 81(20)8289–8297. doi:10.1021/ac900672a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Castro-Perez J, Roddy TP, Nibbering NM, Shah V, McLaren DG, Previs S, Attygalle AB, Herath K, Chen Z, Wang SP, Mitnaul L, Hubbard BK, Vreeken RJ, Johns DG, Hankemeier T (2011) Localization of fatty acyl and double bond positions in phosphatidylcholines using a dual stage CID fragmentation coupled with ion mobility mass spectrometry. J Am Soc Mass Spectrom 22(9)1552–1567. doi:10.1007/s13361-011-0172-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaur-Atwal G, Reynolds JC, Mussell C, Champarnaud E, Knapman TW, Ashcroft AE, O’Connor G, Christie SD, Creaser CS (2011) Determination of testosterone and epitestosterone glucuronides in urine by ultra performance liquid chromatography-ion mobility-mass spectrometry. Analyst 136(19)3911–3916. doi:10.1039/c1an15450h

    Article  CAS  PubMed  Google Scholar 

  14. Ahonen L, Fasciotti M, Gennas GB, Kotiaho T, Daroda RJ, Eberlin M, Kostiainen R (2013) Separation of steroid isomers by ion mobility mass spectrometry. J Chromatogr A 1310:133–137. doi:10.1016/j.chroma.2013.08.056

    Article  CAS  PubMed  Google Scholar 

  15. Dong L, Shion H, Davis RG, Terry-Penak B, Castro-Perez J, van Breemen RB (2010) Collision cross-section determination and tandem mass spectrometric analysis of isomeric carotenoids using electrospray ion mobility time-of-flight mass spectrometry. Anal Chem. doi:10.1021/ac101974g

    Google Scholar 

  16. Domalain V, Hubert-Roux M, Lange CM, Baudoux J, Rouden J, Afonso C (2014) Use of transition metals to improve the diastereomers differentiation by ion mobility and mass spectrometry. J Mass Spectrom: JMS 49(5)423–427. doi:10.1002/jms.3349

    Article  CAS  PubMed  Google Scholar 

  17. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH Jr (2008) Ion mobility-mass spectrometry. J Mass Spectrom: JMS 43(1)1–22. doi:10.1002/jms.1383

    Article  CAS  PubMed  Google Scholar 

  18. Lapthorn C, Pullen F, Chowdhry BZ (2013) Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions. Mass Spectrom Rev 32(1)43–71. doi:10.1002/mas.21349

    Article  CAS  PubMed  Google Scholar 

  19. Fenn LS, Kliman M, Mahsut A, Zhao SR, McLean JA (2009) Characterizing ion mobility-mass spectrometry conformation space for the analysis of complex biological samples. Anal Bioanal Chem 394(1)235–244. doi:10.1007/s00216-009-2666-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kliman M, May JC, McLean JA (2011) Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta 1811(11)935–945. doi:10.1016/j.bbalip.2011.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Woods AS, Ugarov M, Egan T, Koomen J, Gillig KJ, Fuhrer K, Gonin M, Schultz JA (2004) Lipid/peptide/nucleotide separation with MALDI-ion mobility-TOF MS. Anal Chem 76(8)2187–2195. doi:10.1021/ac035376k

    Article  CAS  PubMed  Google Scholar 

  22. Dwivedi P, Schultz AJ, Hill HH (2010) Metabolic profiling of human blood by high resolution Ion Mobility Mass Spectrometry (IM-MS) Int J Mass Spectrom 298(1-3)78–90. doi:10.1016/j.ijms.2010.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paglia G, Angel P, Williams JP, Richardson K, Olivos HJ, Thompson JW, Menikarachchi L, Lai S, Walsh C, Moseley A, Plumb RS, Grant DF, Palsson BO, Langridge J, Geromanos S, Astarita G (2015) Ion-mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Anal Chem 87(2)1137–1144. doi:10.1021/ac503715v

    Article  CAS  PubMed  Google Scholar 

  24. Jackson SN, Ugarov M, Post JD, Egan T, Langlais D, Schultz JA, Woods AS (2008) A study of phospholipids by ion mobility TOFMS. J Am Soc Mass Spectrom 19(11)1655–1662. doi:10.1016/j.jasms.2008.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shvartsburg AA, Isaac G, Leveque N, Smith RD, Metz TO (2011) Separation and classification of lipids using differential ion mobility spectrometry. J Am Soc Mass Spectrom 22(7)1146–1155. doi:10.1007/s13361-011-0114-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH (2004) Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom: RCM 18(20)2401–2414. doi:10.1002/rcm.1641

    Article  CAS  PubMed  Google Scholar 

  27. Paglia G, Menikarachchi L, Langridge J, Astarita G (2014) Travelling-Wave Ion Mobility-MS in metabolomics: workflows and bioinformatic tools. In: Rudaz S (ed) Identification and data processing methods in metabolomics. Future Medicine, London, UK. doi:10.4155/FSEB2013.14.224

    Google Scholar 

  28. Paglia G, Williams JP, Menikarachchi L, Thompson JW, Tyldesley-Worster R, Halldorsson S, Rolfsson O, Moseley A, Grant D, Langridge J, Palsson BO, Astarita G (2014) Ion mobility derived collision cross sections to support metabolomics applications. Anal Chem 86(8)3985–3993. doi:10.1021/ac500405x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paglia G, Williams JP, Menikarachchi L, Thompson JW, Tyldesley-Worster R, HalldĂłrsson S, Rolfsson O, Moseley A, Grant D, Langridge J, Palsson BO, Astarita G (2014) Ion Mobility-derived Collision Cross-Sections to Support Metabolomics Applications. Analytical chemistry Accepted

    Google Scholar 

  30. Damen CW, Isaac G, Langridge J, Hankemeier T, Vreeken RJ (2014) Enhanced lipid isomer separation in human plasma using reversed-phase UPLC with ion-mobility/high-resolution MS detection. J Lipid Res. doi:10.1194/jlr.D047795

    PubMed  PubMed Central  Google Scholar 

  31. Churchwell MI, Twaddle NC, Meeker LR, Doerge DR (2005) Improving LC-MS sensitivity through increases in chromatographic performance: comparisons of UPLC-ES/MS/MS to HPLC-ES/MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 825(2)134–143. doi:10.1016/j.jchromb.2005.05.037

    Article  CAS  PubMed  Google Scholar 

  32. Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, Nicholson JK (2006) UPLC/MS(E); a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun Mass Spectrometry: RCM 20(13)1989–1994. doi:10.1002/rcm.2550

    Article  CAS  PubMed  Google Scholar 

  33. Swartz ME (2005) UPLC™: an introduction and review. J Liq Chromatogr Relat Technol 28:1253–1263

    Article  CAS  Google Scholar 

  34. Cajka T, Fiehn O (2014) Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Anal Chem: TRAC 61:192–206. doi:10.1016/j.trac.2014.04.017

    Article  CAS  Google Scholar 

  35. Campuzano I, Bush MF, Robinson CV, Beaumont C, Richardson K, Kim H, Kim HI (2012) Structural characterization of drug-like compounds by ion mobility mass spectrometry: comparison of theoretical and experimentally derived nitrogen collision cross sections. Anal Chem 84(2)1026–1033. doi:10.1021/ac202625t

    Article  CAS  PubMed  Google Scholar 

  36. Dear GJ, Munoz-Muriedas J, Beaumont C, Roberts A, Kirk J, Williams JP, Campuzano I (2010) Sites of metabolic substitution: investigating metabolite structures utilising ion mobility and molecular modelling. Rapid Commun Mass Spectrom: RCM 24(21)3157–3162. doi:10.1002/rcm.4742

    Article  CAS  PubMed  Google Scholar 

  37. Wickramasekara SI, Zandkarimi F, Morre J, Kirkwood J, Legette L, Jiang Y, Gombart AF, Stevens JF, Maier CS (2013) Electrospray quadrupole travelling wave ion mobility time-of-flight mass spectrometry for the detection of plasma metabolome changes caused by xanthohumol in obese zucker (fa/fa) rats. Metabolites 3(3)701–717. doi:10.3390/metabo3030701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chong WP, Goh LT, Reddy SG, Yusufi FN, Lee DY, Wong NS, Heng CK, Yap MG, Ho YS (2009) Metabolomics profiling of extracellular metabolites in recombinant Chinese Hamster Ovary fed-batch culture. Rapid Commun Mass Spectrom: RCM 23(23)3763–3771. doi:10.1002/rcm.4328

    Article  CAS  PubMed  Google Scholar 

  39. Gonzales GB, Raes K, Coelus S, Struijs K, Smagghe G, Van Camp J (2014) Ultra(high)-pressure liquid chromatography-electrospray ionization-time-of-flight-ion mobility-high definition mass spectrometry for the rapid identification and structural characterization of flavonoid glycosides from cauliflower waste. J Chromatogr A 1323:39–48. doi:10.1016/j.chroma.2013.10.077

    Article  CAS  PubMed  Google Scholar 

  40. Armstrong D (2010) Lipidomics : volume 2: methods and protocols, Methods in Molecular Biology, Spinger

    Google Scholar 

  41. Malkar AD, Devenport NA, Martin HJ, Patel P, Turner MA, Watson P, Maughan RJ, Reid HJ, Sharp BL, CLP T, Reynolds JC, Creaser CS (2013) Metabolic profiling of human saliva before and after induced physiological stress by ultra-high performance liquid chromatography–ion mobility–mass spectrometry. Metabolomics 9(6)1192–1201. doi:10.1007/s11306-013-0541-x

    Article  CAS  Google Scholar 

  42. Harry EL, Weston DJ, Bristow AW, Wilson ID, Creaser CS (2008) An approach to enhancing coverage of the urinary metabonome using liquid chromatography-ion mobility-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 871(2)357–361. doi:10.1016/j.jchromb.2008.04.043

    Article  CAS  PubMed  Google Scholar 

  43. Fang L, Harkewicz R, Hartvigsen K, Wiesner P, Choi SH, Almazan F, Pattison J, Deer E, Sayaphupha T, Dennis EA, Witztum JL, Tsimikas S, Miller YI (2010) Oxidized cholesteryl esters and phospholipids in zebrafish larvae fed a high cholesterol diet: macrophage binding and activation. J Biol Chem 285(42)32343–32351. doi:10.1074/jbc.M110.137257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Balas L, Guichardant M, Durand T, Lagarde M (2014) Confusion between protectin D1 (PD1) and its isomer protectin DX (PDX). An overview on the dihydroxy-docosatrienes described to date. Biochimie 99:1–7. doi:10.1016/j.biochi.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  45. Chen P, Fenet B, Michaud S, Tomczyk N, Vericel E, Lagarde M, Guichardant M (2009) Full characterization of PDX, a neuroprotectin/protectin D1 isomer, which inhibits blood platelet aggregation. FEBS Lett 583(21)3478–3484. doi:10.1016/j.febslet.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  46. Skraskova K, Claude E, Jones EA, Towers M, Ellis SR, Heeren RM (2016) Enhanced capabilities for imaging gangliosides in murine brain with matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry coupled to ion mobility separation. Methods. doi:10.1016/j.ymeth.2016.02.014

    PubMed  Google Scholar 

  47. Trim PJ, Atkinson SJ, Princivalle AP, Marshall PS, West A, Clench MR (2008) Matrix-assisted laser desorption/ionisation mass spectrometry imaging of lipids in rat brain tissue with integrated unsupervised and supervised multivariant statistical analysis. Rapid Commun Mass Spectrom: RCM 22(10)1503–1509. doi:10.1002/rcm.3498

    Article  CAS  PubMed  Google Scholar 

  48. Djidja MC, Claude E, Snel MF, Francese S, Scriven P, Carolan V, Clench MR (2010) Novel molecular tumour classification using MALDI-mass spectrometry imaging of tissue micro-array. Anal Bioanal Chem 397(2)587–601. doi:10.1007/s00216-010-3554-6

    Article  CAS  PubMed  Google Scholar 

  49. Galhena AS, Harris GA, Kwasnik M, Fernandez FM (2010) Enhanced direct ambient analysis by differential mobility-filtered desorption electrospray ionization-mass spectrometry. Anal Chem 82(22)9159–9163. doi:10.1021/ac102340h

    Article  CAS  PubMed  Google Scholar 

  50. Li H, Smith BK, Márk L, Nemesa P, Nazarian J, Vertes A (2014) Ambient molecular imaging by laser ablation electrospray ionization mass spectrometry with ion mobility separation. Int J Mass Spectrom 377:681–689

    Article  Google Scholar 

  51. Takáts Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695)471–473. doi:10.1126/science.1104404

    Article  PubMed  Google Scholar 

  52. Wiseman JM, Ifa DR, Song Q, Cooks RG (2006) Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew Chem Int Ed 45(43)7188–7192

    Article  CAS  Google Scholar 

  53. Song Y, Talaty N, Tao WA, Pan Z, Cooks RG (2007) Rapid ambient mass spectrometric profiling of intact, untreated bacteria using desorption electrospray ionization. Chem Commun 1:61–63. doi:10.1039/B615724F

    Article  Google Scholar 

  54. Watrous J, Hendricks N, Meehan M, Dorrestein PC (2010) Capturing bacterial metabolic exchange using thin film desorption electrospray ionization-imaging mass spectrometry. Anal Chem 82(5)1598–1600. doi:10.1021/ac9027388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jones MD, Rainville PD, Isaac G, Wilson ID, Smith NW, Plumb RS (2014) Ultra high resolution SFC-MS as a high throughput platform for metabolic phenotyping: application to metabolic profiling of rat and dog bile. J Chromatogr B Analyt Technol Biomed Life Sci 966:200–207. doi:10.1016/j.jchromb.2014.04.017

    Article  CAS  PubMed  Google Scholar 

  56. Novakova L, Chocholous P, Solich P (2014) Ultra-fast separation of estrogen steroids using subcritical fluid chromatography on sub-2-micron particles. Talanta 121:178–186. doi:10.1016/j.talanta.2013.12.056

    Article  CAS  PubMed  Google Scholar 

  57. Lee JW, Nagai T, Gotoh N, Fukusaki E, Bamba T (2014) Profiling of regioisomeric triacylglycerols in edible oils by supercritical fluid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 966:193–199. doi:10.1016/j.jchromb.2014.01.040

    Article  CAS  PubMed  Google Scholar 

  58. Lee JW, Nishiumi S, Yoshida M, Fukusaki E, Bamba T (2013) Simultaneous profiling of polar lipids by supercritical fluid chromatography/tandem mass spectrometry with methylation. J Chromatogr A 1279:98–107. doi:10.1016/j.chroma.2013.01.020

    Article  CAS  PubMed  Google Scholar 

  59. Bamba T, Lee JW, Matsubara A, Fukusaki E (2012) Metabolic profiling of lipids by supercritical fluid chromatography/mass spectrometry. J Chromatogr A 1250:212–219. doi:10.1016/j.chroma.2012.05.068

    Article  CAS  PubMed  Google Scholar 

  60. Clemmer DE, Jarrold MF (1997) Ion mobility measurements and their applications to clusters and biomolecules. J Mass Spectrom 32:577–592

    Article  CAS  Google Scholar 

  61. Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH (2007) An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom 261(1)1–12

    Article  CAS  Google Scholar 

  62. McLean JR, McLean JA, Wu Z, Becker C, Perez LM, Pace CN, Scholtz JM, Russell DH (2010) Factors that influence helical preferences for singly charged gas-phase peptide ions: the effects of multiple potential charge-carrying sites. J Phys Chem B 114(2)809–816. doi:10.1021/jp9105103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bohrer BC, Merenbloom SI, Koeniger SL, Hilderbrand AE, Clemmer DE (2008) Biomolecule analysis by ion mobility spectrometry. Annu Rev Anal Chem 1:293–327. doi:10.1146/annurev.anchem.1.031207.113001

    Article  CAS  Google Scholar 

  64. Shrestha B, Vertes A (2014) High-throughput cell and tissue analysis with enhanced molecular coverage by laser ablation electrospray ionization mass spectrometry using ion mobility separation. Anal Chem 86(9)4308–4315. doi:10.1021/ac500007t

    Article  CAS  PubMed  Google Scholar 

  65. Fasciotti M, Sanvido GB, Santos VG, Lalli PM, McCullagh M, de Sa GF, Daroda RJ, Peter MG, Eberlin MN (2012) Separation of isomeric disaccharides by traveling wave ion mobility mass spectrometry using CO2 as drift gas. J Mass Spectrom: JMS 47(12)1643–1647. doi:10.1002/jms.3089

    Article  CAS  PubMed  Google Scholar 

  66. Lalli PM, Corilo YE, Fasciotti M, Riccio MF, de Sa GF, Daroda RJ, Souza GH, McCullagh M, Bartberger MD, Eberlin MN, Campuzano ID (2013) Baseline resolution of isomers by traveling wave ion mobility mass spectrometry: investigating the effects of polarizable drift gases and ionic charge distribution. J Mass Spectrom: JMS 48(9)989–997. doi:10.1002/jms.3245

    Article  CAS  PubMed  Google Scholar 

  67. Wu C, Dill AL, Eberlin LS, Cooks RG, Ifa DR (2013) Mass spectrometry imaging under ambient conditions. Mass Spectrom Rev 32(3)218–243. doi:10.1002/mas.21360

    Article  CAS  PubMed  Google Scholar 

  68. Paglia G, D’Apolito O, Gelzo M, Dello Russo A, Corso G (2010) Direct analysis of sterols from dried plasma/blood spots by an atmospheric pressure thermal desorption chemical ionization mass spectrometry (APTDCI-MS) method for a rapid screening of Smith-Lemli-Opitz syndrome. Analyst 135(4)789–796

    Article  CAS  PubMed  Google Scholar 

  69. Paglia G, Ifa DR, Wu C, Corso G, Cooks RG (2010) Desorption electrospray ionization mass spectrometry analysis of lipids after two-dimensional high-performance thin-layer chromatography partial separation. Anal Chem 82(5)1744–1750. doi:10.1021/ac902325j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. David Grant, Andrea Armirotti, Will Thompson, Michal Kliman, Hans Vissers, Kevin Giles, Jonathan Williams, Nick Tomczyk, and Suraj Dhungana for discussions we found most enlightening.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Astarita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Paglia, G., Shrestha, B., Astarita, G. (2017). Ion-Mobility Mass Spectrometry for Lipidomics Applications. In: Wood, P. (eds) Lipidomics. Neuromethods, vol 125. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6946-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6946-3_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6944-9

  • Online ISBN: 978-1-4939-6946-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics