Skip to main content

Co-culture Synaptogenic Assay: A New Look at Fluorescence Reporters and Technological Devices

  • Protocol
  • First Online:
Synapse Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1538))

  • 3990 Accesses

Abstract

The mechanism underlying the differentiation of pre- and postsynaptic specifications involves the sequential and dynamic recruitment of specific molecules coordinated by bidirectional signaling across the synaptic cleft. In this chapter, we describe the co-culture assay, a useful method to evaluate cell-surface molecules through its ability to promote the recruitment of proteins required for synapse structure and function. The versatility of this simple and reliable method is illustrated by the wide variety of applications ranging from analysis of synaptogenic activity to evaluation of soluble compounds with therapeutic potential. In addition, we provide a framework to enable the co-culture assay as a tool for high-throughput studies, thereby improving the efficiency and sensitivity of this classic method in neuroscience.

Authors contributed equally, correspondence may be addressed to either.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HTPS:

High-throughput studies

CAMs:

Cell adhesion molecules

NLG1:

Neuroligin 1

EphBs:

Ephrin B

LRRTM1:

Leucine rich repeat transmembrane neuronal 1

SynCAMs/Necls:

Synaptic adhesion molecule

HEK 293:

Human embryonic kidney

COS:

Cercopithecus aethiops kidney

MFD:

Microfluidic devices

TIRF:

Total internal reflection fluorescence

CFP:

Cyan fluorescent protein

P0:

Postnatal day 0

Fiji:

ImageJ image processing package (fiji.sc/Fiji)

Amaxa:

Electroporation system for gene delivering (bio.lonza.com)

MATLAB:

Matrix laboratory technical computing language (mathworks.com)

GNU Octave:

Matrix laboratory technical computing language (gnu.org/software/octave/)

Imaris:

Interactive microscopy image analysis software (bitplane.com)

References

  1. Fu Z et al (2003) Functional excitatory synapses in HEK293 cells expressing neuroligin and glutamate receptors. J Neurophysiol 90(6):3950–3957

    Article  CAS  PubMed  Google Scholar 

  2. Biederer T et al (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297(5586):1525–1531

    Article  CAS  PubMed  Google Scholar 

  3. Scheiffele P et al (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101(6):657–669

    Article  CAS  PubMed  Google Scholar 

  4. Biederer T, Scheiffele P (2007) Mixed-culture assays for analyzing neuronal synapse formation. Nat Protoc 2(3):670–676

    Article  CAS  PubMed  Google Scholar 

  5. Craig AM, Graf ER, Linhoff MW (2006) How to build a central synapse: clues from cell culture. Trends Neurosci 29(1):8–20

    Article  CAS  PubMed  Google Scholar 

  6. Graf ER et al (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119(7):1013–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aoto J et al (2007) Postsynaptic ephrinB3 promotes shaft glutamatergic synapse formation. J Neurosci 27(28):7508–7519

    Article  CAS  PubMed  Google Scholar 

  8. Kayser MS et al (2006) Intracellular and trans-synaptic regulation of glutamatergic synaptogenesis by EphB receptors. J Neurosci 26(47):12152–12164

    Article  CAS  PubMed  Google Scholar 

  9. Linhoff MW et al (2009) An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron 61(5):734–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim JH et al (2005) Retrovirally transduced NCAM140 facilitates neuronal fate choice of hippocampal progenitor cells. J Neurochem 94(2):417–424

    Article  CAS  PubMed  Google Scholar 

  11. Henkemeyer M et al (2003) Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J Cell Biol 163(6):1313–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Henderson JT et al (2001) The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32(6):1041–1056

    Article  CAS  PubMed  Google Scholar 

  13. Levinson JN et al (2005) Neuroligins mediate excitatory and inhibitory synapse formation: involvement of PSD-95 and neurexin-1beta in neuroligin-induced synaptic specificity. J Biol Chem 280(17):17312–17319

    Article  CAS  PubMed  Google Scholar 

  14. Chih B, Engelman H, Scheiffele P (2005) Control of excitatory and inhibitory synapse formation by neuroligins. Science 307(5713):1324–1328

    Article  CAS  PubMed  Google Scholar 

  15. Fogel AI et al (2007) SynCAMs organize synapses through heterophilic adhesion. J Neurosci 27(46):12516–12530

    Article  CAS  PubMed  Google Scholar 

  16. Park J et al (2012) Multi-compartment neuron-glia co-culture platform for localized CNS axon-glia interaction study. Lab Chip 12(18):3296–3304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi P et al (2011) Synapse microarray identification of small molecules that enhance synaptogenesis. Nat Commun 2:510

    Article  PubMed  PubMed Central  Google Scholar 

  18. Park J et al (2009) Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomed Microdevices 11(6):1145–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taylor AM et al (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2(8):599–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao C, Dreosti E, Lagnado L (2011) Homeostatic synaptic plasticity through changes in presynaptic calcium influx. J Neurosci 31(20):7492–7496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dreosti E et al (2009) A genetically encoded reporter of synaptic activity in vivo. Nat Methods 6(12):883–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Royle SJ et al (2008) Imaging phluorin-based probes at hippocampal synapses. Methods Mol Biol 457:293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mao T et al (2008) Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PLoS One 3(3):e1796

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bozza T et al (2004) In vivo imaging of neuronal activity by targeted expression of a genetically encoded probe in the mouse. Neuron 42(1):9–21

    Article  CAS  PubMed  Google Scholar 

  25. Chen TW et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marvin JS et al (2013) An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods 10(2):162–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jin L et al (2012) Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75(5):779–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  Google Scholar 

  29. Czondor K et al (2013) Micropatterned substrates coated with neuronal adhesion molecules for high-content study of synapse formation. Nat Commun 4:2252

    Article  PubMed  Google Scholar 

  30. Hamilton LK et al (2010) Widespread deficits in adult neurogenesis precede plaque and tangle formation in the 3xTg mouse model of Alzheimer’s disease. Eur J Neurosci 32(6):905–920

    Article  PubMed  Google Scholar 

  31. Zeitelhofer M et al (2007) High-efficiency transfection of mammalian neurons via nucleofection. Nat Protoc 2(7):1692–1704

    Article  CAS  PubMed  Google Scholar 

  32. Mercken M et al (1992) Immunocytochemical detection of the growth-associated protein B-50 by newly characterized monoclonal antibodies in human brain and muscle. J Neurobiol 23(3):309–321

    Article  CAS  PubMed  Google Scholar 

  33. Granseth B et al (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51(6):773–786

    Article  CAS  PubMed  Google Scholar 

  34. Winkelmann A et al (2015) Identification of a new genomic hot spot of evolutionary diversification of protein function. PLoS One 10(5):e0125413

    Article  PubMed  PubMed Central  Google Scholar 

  35. Perez de Arce K et al (2010) Synaptic clustering of PSD-95 is regulated by c-Abl through tyrosine phosphorylation. J Neurosci 30(10):3728–3738

    Article  CAS  PubMed  Google Scholar 

  36. Hirbec H et al (2003) Rapid and differential regulation of AMPA and kainate receptors at hippocampal mossy fibre synapses by PICK1 and GRIP. Neuron 37(4):625–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Voglmaier SM et al (2006) Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51(1):71–84

    Article  CAS  PubMed  Google Scholar 

  38. Willig KI et al (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440(7086):935–939

    Article  CAS  PubMed  Google Scholar 

  39. Umemori H et al (2004) FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 118(2):257–270

    Article  CAS  PubMed  Google Scholar 

  40. Prange O et al (2004) A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc Natl Acad Sci U S A 101(38):13915–13920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thank you to Dr. Laura Swan for reading and suggestions to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Stagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Perez de Arce, K., Stagi, M. (2017). Co-culture Synaptogenic Assay: A New Look at Fluorescence Reporters and Technological Devices. In: Poulopoulos, A. (eds) Synapse Development. Methods in Molecular Biology, vol 1538. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6688-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6688-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6686-8

  • Online ISBN: 978-1-4939-6688-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics