Skip to main content

Imaging pHluorin-Based Probes at Hippocampal Synapses

  • Protocol
  • First Online:
Membrane Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 457))

Summary

Accurate measurement of synaptic vesicle exocytosis and endocytosis is crucial to understanding the molecular basis of synaptic transmission. The fusion of a pH-sensitive green fluorescent protein (pHluorin) to various synaptic vesicle proteins has allowed the study of synaptic vesicle recycling in real time. Two such probes, synaptopHluorin and sypHy, have been imaged at synapses of hippocampal neurons in culture. The combination of these reporters with techniques for molecular interference, such as RNAi allows for the study of molecules involved in synaptic vesicle recycling. Here the authors describe methods for the culture and transfection of hippocampal neurons, imaging of pHluorin-based probes at synapses and analysis of pHluorin signals down to the resolution of individual synaptic vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katz, B. (1969) The Release of Neural Transmitter Substances. Liverpool University Press, Liverpool.

    Google Scholar 

  2. Royle, S. J., and Lagnado, L. (2003) Endocytosis at the synaptic terminal. J Physiol 553, 345–355.

    Article  PubMed  CAS  Google Scholar 

  3. Ryan, T. A. (2001) Presynaptic imaging techniques. Curr Opin Neurobiol 11, 544–549.

    Article  PubMed  CAS  Google Scholar 

  4. Miesenbock, G., De Angelis, D. A., and Rothman, J. E. (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195.

    Article  PubMed  CAS  Google Scholar 

  5. Sankaranarayanan, S., De Angelis, D., Rothman, J. E., and Ryan, T. A. (2000) The use of pHluorins for optical measurements of presynaptic activity. Biophys J 79, 2199–2208.

    Article  PubMed  CAS  Google Scholar 

  6. Granseth, B., Odermatt, B., Royle, S. J., and Lagnado, L. (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786.

    Article  PubMed  CAS  Google Scholar 

  7. Diril, M. K., Wienisch, M., Jung, N., Klingauf, J., and Haucke, V. (2006) Stonin 2 is an AP-2-dependent endocytic sorting adaptor for synaptotagmin internalization and recycling. Developmental cell 10, 233–244.

    Article  PubMed  CAS  Google Scholar 

  8. Voglmaier, S. M., Kam, K., Yang, H., et al. (2006) Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51, 71–84.

    Article  PubMed  CAS  Google Scholar 

  9. Atluri, P. P. and Ryan, T. A. (2006) The kinetics of synaptic vesicle reacidification at hippocampal nerve terminals. J Neurosci 26, 2313–2320.

    Article  PubMed  CAS  Google Scholar 

  10. Gandhi, S. P. and Stevens, C. F. (2003) Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423, 607–613.

    Article  PubMed  CAS  Google Scholar 

  11. Sankaranarayanan, S. and Ryan, T. A. (2000) Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat Cell Biol 2, 197–204.

    Article  PubMed  CAS  Google Scholar 

  12. Fernandez-Alfonso, T., Kwan, R., and Ryan, T. A. (2006) Synaptic vesicles interchange their membrane proteins with a large surface reservoir during recycling. Neuron 51, 179–186.

    Article  PubMed  CAS  Google Scholar 

  13. Wienisch, M. and Klingauf, J. (2006) Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical. Nat Neurosci 9, 1019–1027.

    Article  PubMed  CAS  Google Scholar 

  14. Johnston, P. A. and Sudhof, T. C. (1990) The multisubunit structure of synaptophysin. Relationship between disulfide bonding and homo-oligomerization. J Biol Chem. 265, 8869–8873.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Superecliptic pHluorin and monomeric RFP cDNAs were kind gifts from Drs James Rothman and Roger Tsien. This work was supported by the Medical Research Council (MRC), the Swedish Research Council and the Human Frontiers Science Program (HFSP).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Royle, S.J., Granseth, B., Odermatt, B., Derevier, A., Lagnado, L. (2008). Imaging pHluorin-Based Probes at Hippocampal Synapses. In: Vancura, A. (eds) Membrane Trafficking. Methods in Molecular Biology, vol 457. Humana Press. https://doi.org/10.1007/978-1-59745-261-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-261-8_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-925-3

  • Online ISBN: 978-1-59745-261-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics