Skip to main content

Site-Directed Mutagenesis and Its Application in Studying the Interactions of T3S Components

  • Protocol
  • First Online:
Type 3 Secretion Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1531))

Abstract

Type III secretion systems are a prolific virulence determinant among Gram-negative bacteria. They are used to paralyze the host cell, which enables bacterial pathogens to establish often fatal infections—unless an effective therapeutic intervention is available. However, as a result of a catastrophic rise in infectious bacteria resistant to conventional antibiotics, these bacteria are again a leading cause of worldwide mortality. Hence, this report describes a pDM4-based site-directed mutagenesis strategy that is assisting in our foremost objective to better understand the fundamental workings of the T3SS, using Yersinia as a model pathogenic bacterium. Examples are given that clearly document how pDM4-mediated site-directed mutagenesis has been used to establish clean point mutations and in-frame deletion mutations that have been instrumental in identifying and understanding the molecular interactions between components of the Yersinia type III secretion system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Francis MS (2010) Type III secretion chaperones: a molecular toolkit for all occasions. In: Durante P, Colucci L (eds) Handbook of molecular chaperones: roles, structures and mechanisms. Nova Science Publishers, Inc., Hauppauge, NY, pp 79–147

    Google Scholar 

  2. Francis MS (2011) Secretion systems and metabolism in the pathogenic Yersiniae. In: Kidd SP (ed) Stress response in pathogenic bacteria. CABI Publishing, Wallingford, UK, pp 185–220

    Chapter  Google Scholar 

  3. Buttner D (2012) Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 76(2):262–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Radics J, Konigsmaier L, Marlovits TC (2014) Structure of a pathogenic type 3 secretion system in action. Nat Struct Mol Biol 21(1):82–87. doi:10.1038/nsmb.2722

    Article  CAS  PubMed  Google Scholar 

  5. Dewoody RS, Merritt PM, Marketon MM (2013) Regulation of the Yersinia type III secretion system: traffic control. Front Cell Infect Microbiol 3:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gauthier A, Finlay BB (2003) Translocated intimin receptor and its chaperone interact with ATPase of the type III secretion apparatus of enteropathogenic Escherichia coli. J Bacteriol 185(23):6747–6755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thomas J, Stafford GP, Hughes C (2004) Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. Proc Natl Acad Sci U S A 101(11):3945–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lloyd SA, Forsberg Å, Wolf-Watz H, Francis MS (2001) Targeting exported substrates to the Yersinia TTSS: different functions for different signals? Trends Microbiol 9(8):367–371

    Article  CAS  PubMed  Google Scholar 

  9. Sorg JA, Miller NC, Schneewind O (2005) Substrate recognition of type III secretion machines—testing the RNA signal hypothesis. Cell Microbiol 7(9):1217–1225

    Article  CAS  PubMed  Google Scholar 

  10. Pujol C, Bliska JB (2005) Turning Yersinia pathogenesis outside in: subversion of macrophage function by intracellular yersiniae. Clin Immunol 114(3):216–226

    Article  CAS  PubMed  Google Scholar 

  11. Milton DL, O’Toole R, Horstedt P, Wolf-Watz H (1996) Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 178(5):1310–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lavander M, Sundberg L, Edqvist PJ, Lloyd SA, Wolf-Watz H, Forsberg Å (2002) Proteolytic cleavage of the FlhB homologue YscU of Yersinia pseudotuberculosis is essential for bacterial survival but not for type III secretion. J Bacteriol 184(16):4500–4509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Edqvist PJ, Olsson J, Lavander M, Sundberg L, Forsberg Å, Wolf-Watz H, Lloyd SA (2003) YscP and YscU regulate substrate specificity of the Yersinia type III secretion system. J Bacteriol 185(7):2259–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bjornfot AC, Lavander M, Forsberg A, Wolf-Watz H (2009) Autoproteolysis of YscU of Yersinia pseudotuberculosis is important for regulation of expression and secretion of Yop proteins. J Bacteriol 191(13):4259–4267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sorg I, Wagner S, Amstutz M, Muller SA, Broz P, Lussi Y, Engel A, Cornelis GR (2007) YscU recognizes translocators as export substrates of the Yersinia injectisome. EMBO J 26(12):3015–3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Agrain C, Callebaut I, Journet L, Sorg I, Paroz C, Mota LJ, Cornelis GR (2005) Characterization of a type III secretion substrate specificity switch (T3S4) domain in YscP from Yersinia enterocolitica. Mol Microbiol 56(1):54–67

    Article  CAS  PubMed  Google Scholar 

  17. Mattei PJ, Faudry E, Job V, Izore T, Attree I, Dessen A (2011) Membrane targeting and pore formation by the type III secretion system translocon. FEBS J 278(3):414–426

    Article  CAS  PubMed  Google Scholar 

  18. Mueller CA, Broz P, Cornelis GR (2008) The type III secretion system tip complex and translocon. Mol Microbiol 68(5):1085–1095

    Article  CAS  PubMed  Google Scholar 

  19. Montagner C, Arquint C, Cornelis GR (2011) Translocators YopB and YopD from Yersinia form a multimeric integral membrane complex in eukaryotic cell membranes. J Bacteriol 193(24):6923–6928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neyt C, Cornelis GR (1999) Insertion of a Yop translocation pore into the macrophage plasma membrane by Yersinia enterocolitica: requirement for translocators YopB and YopD, but not LcrG. Mol Microbiol 33(5):971–981

    Article  CAS  PubMed  Google Scholar 

  21. Tardy F, Homble F, Neyt C, Wattiez R, Cornelis GR, Ruysschaert JM, Cabiaux V (1999) Yersinia enterocolitica type III secretion-translocation system: channel formation by secreted Yops. EMBO J 18(23):6793–6799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Håkansson S, Bergman T, Vanooteghem JC, Cornelis G, Wolf-Watz H (1993) YopB and YopD constitute a novel class of Yersinia Yop proteins. Infect Immun 61(1):71–80

    PubMed  PubMed Central  Google Scholar 

  23. Håkansson S, Schesser K, Persson C, Galyov EE, Rosqvist R, Homble F, Wolf-Watz H (1996) The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. EMBO J 15(21):5812–5823

    PubMed  PubMed Central  Google Scholar 

  24. Mueller CA, Broz P, Muller SA, Ringler P, Erne-Brand F, Sorg I, Kuhn M, Engel A, Cornelis GR (2005) The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science 310(5748):674–676

    Article  CAS  PubMed  Google Scholar 

  25. Broz P, Mueller CA, Muller SA, Philippsen A, Sorg I, Engel A, Cornelis GR (2007) Function and molecular architecture of the Yersinia injectisome tip complex. Mol Microbiol 65(5):1311–1320

    Article  CAS  PubMed  Google Scholar 

  26. Olsson J, Edqvist PJ, Bröms JE, Forsberg Å, Wolf-Watz H, Francis MS (2004) The YopD translocator of Yersinia pseudotuberculosis is a multifunctional protein comprised of discrete domains. J Bacteriol 186(13):4110–4123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tengel T, Sethson I, Francis MS (2002) Conformational analysis by CD and NMR spectroscopy of a peptide encompassing the amphipathic domain of YopD from Yersinia. Eur J Biochem 269(15):3659–3668

    Article  CAS  PubMed  Google Scholar 

  28. Bröms JE, Forslund A-L, Forsberg Å, Francis MS (2003) Dissection of homologous translocon operons reveals a distinct role for YopD in type III secretion by Yersinia pseudotuberculosis. Microbiology 149:2615–2626

    Article  CAS  PubMed  Google Scholar 

  29. Costa TR, Amer AA, Fallman M, Fahlgren A, Francis MS (2012) Coiled-coils in the YopD translocator family: a predicted structure unique to the YopD N-terminus contributes to full virulence of Yersinia pseudotuberculosis. Infect Genet Evol 12(8):1729–1742

    Article  CAS  PubMed  Google Scholar 

  30. Costa TR, Edqvist PJ, Broms JE, Ahlund MK, Forsberg A, Francis MS (2010) YopD self-assembly and binding to LcrV facilitate type III secretion activity by Yersinia pseudotuberculosis. J Biol Chem 285(33):25269–25284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Costa TR, Amer AA, Farag SI, Wolf-Watz H, Fallman M, Fahlgren A, Edgren T, Francis MS (2013) Type III secretion translocon assemblies that attenuate Yersinia virulence. Cell Microbiol 15(7):1088–1110

    Article  CAS  PubMed  Google Scholar 

  32. Francis MS, Wolf-Watz H (1998) YopD of Yersinia pseudotuberculosis is translocated into the cytosol of HeLa epithelial cells: evidence of a structural domain necessary for translocation. Mol Microbiol 29(3):799–813

    Article  CAS  PubMed  Google Scholar 

  33. Viboud GI, Bliska JB (2005) Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol 59:69–89

    Article  CAS  PubMed  Google Scholar 

  34. Black DS, Bliska JB (2000) The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol Microbiol 37(3):515–527

    Article  CAS  PubMed  Google Scholar 

  35. Von Pawel-Rammingen U, Telepnev MV, Schmidt G, Aktories K, Wolf-Watz H, Rosqvist R (2000) GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol Microbiol 36(3):737–748

    Article  Google Scholar 

  36. Guan KL, Dixon JE (1990) Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249(4968):553–556

    Article  CAS  PubMed  Google Scholar 

  37. Zhang ZY, Clemens JC, Schubert HL, Stuckey JA, Fischer MW, Hume DM, Saper MA, Dixon JE (1992) Expression, purification, and physicochemical characterization of a recombinant Yersinia protein tyrosine phosphatase. J Biol Chem 267(33):23759–23766

    CAS  PubMed  Google Scholar 

  38. Aili M, Isaksson EL, Hallberg B, Wolf-Watz H, Rosqvist R (2006) Functional analysis of the YopE GTPase-activating protein (GAP) activity of Yersinia pseudotuberculosis. Cell Microbiol 8(6):1020–1033

    Article  CAS  PubMed  Google Scholar 

  39. Isaksson EL, Aili M, Fahlgren A, Carlsson SE, Rosqvist R, Wolf-Watz H (2009) The membrane localization domain is required for intracellular localization and autoregulation of YopE in Yersinia pseudotuberculosis. Infect Immun 77(11):4740–4749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aili M, Isaksson EL, Carlsson SE, Wolf-Watz H, Rosqvist R, Francis MS (2008) Regulation of Yersinia Yop-effector delivery by translocated YopE. Int J Med Microbiol 298(3–4):183–192

    Article  CAS  PubMed  Google Scholar 

  41. Viboud GI, Bliska JB (2001) A bacterial type III secretion system inhibits actin polymerization to prevent pore formation in host cell membranes. EMBO J 20(19):5373–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. de la Puerta ML, Trinidad AG, del Carmen Rodriguez M, Bogetz J, Sanchez Crespo M, Mustelin T, Alonso A, Bayon Y (2009) Characterization of new substrates targeted by Yersinia tyrosine phosphatase YopH. PLoS One 4(2):e4431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Black DS, Bliska JB (1997) Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO J 16(10):2730–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Black DS, Marie-Cardine A, Schraven B, Bliska JB (2000) The Yersinia tyrosine phosphatase YopH targets a novel adhesion-regulated signalling complex in macrophages. Cell Microbiol 2(5):401–414

    Article  CAS  PubMed  Google Scholar 

  45. Persson C, Carballeira N, Wolf-Watz H, Fällman M (1997) The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J 16(9):2307–2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hamid N, Gustavsson A, Andersson K, McGee K, Persson C, Rudd CE, Fallman M (1999) YopH dephosphorylates Cas and Fyn-binding protein in macrophages. Microb Pathog 27(4):231–242

    Article  CAS  PubMed  Google Scholar 

  47. Rolan HG, Durand EA, Mecsas J (2013) Identifying Yersinia YopH-targeted signal transduction pathways that impair neutrophil responses during in vivo murine infection. Cell Host Microbe 14(3):306–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bliska JB, Guan KL, Dixon JE, Falkow S (1991) Tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc Natl Acad Sci U S A 88(4):1187–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Andersson K, Carballeira N, Magnusson KE, Persson C, Stendahl O, Wolf-Watz H, Fällman M (1996) YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis. Mol Microbiol 20(5):1057–1069

    Article  CAS  PubMed  Google Scholar 

  50. Persson C, Nordfelth R, Andersson K, Forsberg Å, Wolf-Watz H, Fällman M (1999) Localization of the Yersinia PTPase to focal complexes is an important virulence mechanism. Mol Microbiol 33(4):828–838

    Article  CAS  PubMed  Google Scholar 

  51. Edqvist PJ, Bröms JE, Betts HJ, Forsberg Å, Pallen MJ, Francis MS (2006) Tetratricopeptide repeats in the type-III-secretion chaperone, LcrH: their role in substrate binding and secretion. Mol Microbiol 59(1):31–44

    Article  CAS  PubMed  Google Scholar 

  52. Francis MS, Aili M, Wiklund ML, Wolf-Watz H (2000) A study of the YopD-LcrH interaction from Yersinia pseudotuberculosis reveals a role for hydrophobic residues within the amphipathic domain of YopD. Mol Microbiol 38(1):85–102

    Article  CAS  PubMed  Google Scholar 

  53. Neyt C, Cornelis GR (1999) Role of SycD, the chaperone of the Yersinia Yop translocators YopB and YopD. Mol Microbiol 31(1):143–156

    Article  CAS  PubMed  Google Scholar 

  54. Wattiau P, Bernier B, Deslee P, Michiels T, Cornelis GR (1994) Individual chaperones required for Yop secretion by Yersinia. Proc Natl Acad Sci U S A 91(22):10493–10497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kopaskie KS, Ligtenberg KG, Schneewind O (2013) Translational regulation of Yersinia enterocolitica mRNA encoding a type III secretion substrate. J Biol Chem 288(49):35478–35488. doi:10.1074/jbc.M113.504811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen Y, Anderson DM (2011) Expression hierarchy in the Yersinia type III secretion system established through YopD recognition of RNA. Mol Microbiol 80(4):966–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bröms JE, Edqvist PJ, Carlsson KE, Forsberg Å, Francis MS (2005) Mapping of a YscY binding domain within the LcrH chaperone that is required for regulation of Yersinia type III secretion. J Bacteriol 187(22):7738–7752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Anderson DM, Ramamurthi KS, Tam C, Schneewind O (2002) YopD and LcrH regulate expression of Yersinia enterocolitica YopQ by a posttranscriptional mechanism and bind to yopQ RNA. J Bacteriol 184(5):1287–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Francis MS, Lloyd SA, Wolf-Watz H (2001) The type III secretion chaperone LcrH co-operates with YopD to establish a negative, regulatory loop for control of Yop synthesis in Yersinia pseudotuberculosis. Mol Microbiol 42(4):1075–1093

    Article  CAS  PubMed  Google Scholar 

  60. Pallen MJ, Francis MS, Futterer K (2003) Tetratricopeptide-like repeats in type-III-secretion chaperones and regulators. FEMS Microbiol Lett 223(1):53–60

    Article  CAS  PubMed  Google Scholar 

  61. Schmid A, Dittmann S, Grimminger V, Walter S, Heesemann J, Wilharm G (2006) Yersinia enterocolitica type III secretion chaperone SycD: recombinant expression, purification and characterization of a homodimer. Protein Expr Purif 49(2):176–182

    Article  CAS  PubMed  Google Scholar 

  62. Swietnicki W, O’Brien S, Holman K, Cherry S, Brueggemann E, Tropea JE, Hines HB, Waugh DS, Ulrich RG (2004) Novel protein-protein interactions of the Yersinia pestis type III secretion system elucidated with a matrix analysis by surface plasmon resonance and mass spectrometry. J Biol Chem 279(37):38693–38700

    Article  CAS  PubMed  Google Scholar 

  63. Evans LD, Hughes C (2009) Selective binding of virulence type III export chaperones by FliJ escort orthologues InvI and YscO. FEMS Microbiol Lett 293(2):292–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Edqvist PJ, Aili M, Liu J, Francis MS (2007) Minimal YopB and YopD translocator secretion by Yersinia is sufficient for Yop-effector delivery into target cells. Microbes Infect 9(2):224–233

    Article  CAS  PubMed  Google Scholar 

  65. Deane JE, Roversi P, King C, Johnson S, Lea SM (2008) Structures of the Shigella flexneri type 3 secretion system protein MxiC reveal conformational variability amongst homologues. J Mol Biol 377(4):985–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pallen MJ, Beatson SA, Bailey CM (2005) Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol 5(1):9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Amer AA, Costa TR, Farag SI, Avican U, Forsberg A, Francis MS (2013) Genetically engineered frameshifted YopN-TyeA chimeras influence type III secretion system function in Yersinia pseudotuberculosis. PLoS One 8(10):e77767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Amer AA, Gurung JM, Costa TR, Ruuth K, Zavialov AV, Forsberg Å, Francis MS (2016) YopN and TyeA hydrophobic contacts required for regulating Ysc-Yop type III secretion activity by Yersinia pseudotuberculosis. Front Cell Infect Microbiol 6:66

    Google Scholar 

  69. Cheng LW, Kay O, Schneewind O (2001) Regulated secretion of YopN by the type III machinery of Yersinia enterocolitica. J Bacteriol 183(18):5293–5301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ferracci F, Schubot FD, Waugh DS, Plano GV (2005) Selection and characterization of Yersinia pestis YopN mutants that constitutively block Yop secretion. Mol Microbiol 57(4):970–987

    Article  CAS  PubMed  Google Scholar 

  71. Joseph SS, Plano GV (2007) Identification of TyeA residues required to interact with YopN and to regulate Yop secretion. Adv Exp Med Biol 603:235–245

    Article  PubMed  Google Scholar 

  72. Schubot FD, Jackson MW, Penrose KJ, Cherry S, Tropea JE, Plano GV, Waugh DS (2005) Three-dimensional structure of a macromolecular assembly that regulates type III secretion in Yersinia pestis. J Mol Biol 346(4):1147–1161

    Article  CAS  PubMed  Google Scholar 

  73. Ferracci F, Day JB, Ezelle HJ, Plano GV (2004) Expression of a functional secreted YopN-TyeA hybrid protein in Yersinia pestis is the result of a +1 translational frameshift event. J Bacteriol 186(15):5160–5166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Amer AA, Ahlund MK, Broms JE, Forsberg A, Francis MS (2011) Impact of the N-terminal secretor domain on YopD translocator function in Yersinia pseudotuberculosis type III secretion. J Bacteriol 193(23):6683–6700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Joseph SS, Plano GV (2013) The SycN/YscB chaperone-binding domain of YopN is required for the calcium-dependent regulation of Yop secretion by Yersinia pestis. Front Cell Infect Microbiol 3:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ali SA, Steinkasserer A (1995) PCR-ligation-PCR mutagenesis: a protocol for creating gene fusions and mutations. Biotechniques 18(5):746–750

    CAS  PubMed  Google Scholar 

  78. Kaniga K, Delor I, Cornelis GR (1991) A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene 109(1):137–141

    Article  CAS  PubMed  Google Scholar 

  79. Diepold A, Wiesand U, Cornelis GR (2011) The assembly of the export apparatus (YscR, S, T, U, V) of the Yersinia type III secretion apparatus occurs independently of other structural components and involves the formation of an YscV oligomer. Mol Microbiol 82(2):502–514

    Article  CAS  PubMed  Google Scholar 

  80. Diepold A, Wiesand U, Amstutz M, Cornelis GR (2012) Assembly of the Yersinia injectisome: the missing pieces. Mol Microbiol 85(5):878–892

    Article  CAS  PubMed  Google Scholar 

  81. Skrzypek E, Haddix PL, Plano GV, Straley SC (1993) New suicide vector for gene replacement in yersiniae and other gram-negative bacteria. Plasmid 29(2):160–163

    Article  CAS  PubMed  Google Scholar 

  82. Edwards RA, Keller LH, Schifferli DM (1998) Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207(2):149–157

    Article  CAS  PubMed  Google Scholar 

  83. Silva-Herzog E, Ferracci F, Jackson MW, Joseph SS, Plano GV (2008) Membrane localization and topology of the Yersinia pestis YscJ lipoprotein. Microbiology 154(2):593–607

    Article  CAS  PubMed  Google Scholar 

  84. Torruellas J, Jackson MW, Pennock JW, Plano GV (2005) The Yersinia pestis type III secretion needle plays a role in the regulation of Yop secretion. Mol Microbiol 57(6):1719–1733

    Article  CAS  PubMed  Google Scholar 

  85. Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81(7):2506–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Milton DL, Norqvist A, Wolf-Watz H (1992) Cloning of a metalloprotease gene involved in the virulence mechanism of Vibrio anguillarum. J Bacteriol 174(22):7235–7244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Miller VL, Mekalanos JJ (1988) A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170(6):2575–2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kolter R, Inuzuka M, Helinski DR (1978) Trans-complementation-dependent replication of a low molecular weight origin fragment from plasmid R6K. Cell 15(4):1199–1208

    Article  CAS  PubMed  Google Scholar 

  89. Simon R, Priefer U, Pühler A (1983) A broad host range mobilisation system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol 1:784–791

    Article  CAS  Google Scholar 

  90. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166(4):557–580

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Swedish Research Council grant 2014–2105 and the Medical Research Foundation of Umeå University to MSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S. Francis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Francis, M.S., Amer, A.A.A., Milton, D.L., Costa, T.R.D. (2017). Site-Directed Mutagenesis and Its Application in Studying the Interactions of T3S Components. In: Nilles, M., Condry, D. (eds) Type 3 Secretion Systems. Methods in Molecular Biology, vol 1531. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6649-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6649-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6647-9

  • Online ISBN: 978-1-4939-6649-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics