Skip to main content

Force Measurements for Cancer Cells

  • Protocol
  • First Online:
Cancer Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1530))

  • 2469 Accesses

Abstract

During cytoskeleton remodeling, cancer cells generate force at the plasma membrane that originates from chemical motors (e.g., actin). This force (pN) and its time course reflect the on and off-rates of the motors. We describe the design and calibration of a force-measuring device (i.e., optical tweezers) that is used to monitor this force and its time course at the edge of a cell, with particular emphasis on the temporal resolution of the instrument.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Monteiro J, Fodde R (2010) Cancer stemness and metastasis: therapeutic consequences and perspectives. Eur J Cancer 46(7):1198–1203. doi:10.1016/j.ejca.2010.02.030, S0959-8049(10)00157-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  2. Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C, Stack MS, Friedl P (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9(8):893–904. doi:10.1038/ncb1616, ncb1616 [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Baugher PJ, Krishnamoorthy L, Price JE, Dharmawardhane SF (2005) Rac1 and Rac3 isoform activation is involved in the invasive and metastatic phenotype of human breast cancer cells. Breast Cancer Res BCR 7:R965–74. doi: 10.1186/bcr1329

  4. Vignjevic D, Schoumacher M, Gavert N, Janssen KP, Jih G, Lae M, Louvard D, Ben-Ze’ev A, Robine S (2007) Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Res 67(14):6844–6853. doi:10.1158/0008-5472.CAN-07-0929

    Article  CAS  PubMed  Google Scholar 

  5. Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329–333. doi:10.1038/nprot.2007.30, nprot.2007.30 [pii]

    Article  CAS  PubMed  Google Scholar 

  7. Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76(4):2307–2316. doi:10.1016/S0006-3495(99)77386-8, S0006-3495(99)77386-8 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A 100(4):1484–1489. doi:10.1073/pnas.0235407100, 0235407100 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kraning-Rush CM, Califano JP, Reinhart-King CA (2012) Cellular traction stresses increase with increasing metastatic potential. PLoS One 7(2):e32572. doi:10.1371/journal.pone.0032572, PONE-D-12-00385 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Indra I, Undyala V, Kandow C, Thirumurthi U, Dembo M, Beningo KA (2013) An in vitro correlation of mechanical forces and metastatic capacity. Phys Biol 8(1):015015. doi:10.1088/1478-3975/8/1/015015, S1478-3975(11)69851-2 [pii]

    Article  Google Scholar 

  11. Tseng Q, Wang I, Duchemin-Pelletier E, Azioune A, Carpi N, Gao J, Filhol O, Piel M, Thery M, Balland M (2011) A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels. Lab Chip 11(13):2231–2240. doi:10.1039/c0lc00641f

    Article  CAS  PubMed  Google Scholar 

  12. Amin L, Ercolini E, Shahapure R, Bisson G, Torre V (2011) The elementary events underlying force generation in neuronal lamellipodia. Sci Rep 1:153. doi:10.1038/srep00153

    Article  PubMed  PubMed Central  Google Scholar 

  13. Amin L, Ercolini E, Shahapure R, Migliorini E, Torre V (2012) The role of membrane stiffness and actin turnover on the force exerted by DRG lamellipodia. Biophys J 102(11):2451–2460. doi:10.1016/j.bpj.2012.04.036, S0006-3495(12)00510-3 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cojoc D, Difato F, Ferrari E, Shahapure RB, Laishram J, Righi M, Di Fabrizio EM, Torre V (2007) Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components. PLoS One 2(10):e1072. doi:10.1371/journal.pone.0001072

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sayyad WA, Amin L, Fabris P, Ercolini E, Torre V (2015) The role of myosin-II in force generation of DRG filopodia and lamellipodia. Sci Rep 5:7842. doi:10.1038/srep07842, srep07842 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Farrell B, Qian F, Kolomeisky A, Anvari B, Brownell WE (2013) Measuring forces at the leading edge: a force assay for cell motility. Integr Biol (Camb) 5(1):204–214. doi:10.1039/c2ib20097j

    Article  CAS  Google Scholar 

  17. Bornschlogl T, Romero S, Vestergaard CL, Joanny JF, Van Nhieu GT, Bassereau P (2013) Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip. Proc Natl Acad Sci U S A 110(47):18928–18933. doi:10.1073/pnas.1316572110, 1316572110 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Manoussaki D, Shin WD, Waterman CM, Chadwick RS (2015) Cytosolic pressure provides a propulsive force comparable to actin polymerization during lamellipod protrusion. Sci Rep 5:12314. doi:10.1038/srep12314, srep12314 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  19. Datar A, Bornschlogl T, Bassereau P, Prost J, Pullarkat PA (2015) Dynamics of membrane tethers reveal novel aspects of cytoskeleton-membrane interactions in axons. Biophys J 108(3):489–497. doi:10.1016/j.bpj.2014.11.3480, S0006-3495(14)04744-4 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pontes B, Viana NB, Salgado LT, Farina M, Moura Neto V, Nussenzveig HM (2011) Cell cytoskeleton and tether extraction. Biophys J 101(1):43–52. doi:10.1016/j.bpj.2011.05.044, S0006-3495(11)00614-X [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pontes B, Ayala Y, Fonseca AC, Romao LF, Amaral RF, Salgado LT, Lima FR, Farina M, Viana NB, Moura-Neto V, Nussenzveig HM (2013) Membrane elastic properties and cell function. PLoS One 8(7):e67708. doi:10.1371/journal.pone.0067708, PONE-D-13-05775 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hochmuth RM, Mohandas N, Blackshear PL Jr (1973) Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. Biophys J 13(8):747–762. doi:10.1016/S0006-3495(73)86021-7, S0006-3495(73)86021-7 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dai J, Sheetz MP (1995) Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys J 68(3):988–996. doi:10.1016/S0006-3495(95)80274-2, S0006-3495(95)80274-2 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shao JY, Hochmuth RM (1996) Micropipette suction for measuring piconewton forces of adhesion and tether formation from neutrophil membranes. Biophys J 71(5):2892–2901. doi:10.1016/S0006-3495(96)79486-9, S0006-3495(96)79486-9 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qian F, Ermilov S, Murdock D, Brownell WE, Anvari B (2004) Combining optical tweezers and patch clamp for studies of cell membrane electromechanics. Rev Sci Instrum 75(9):2937–2942. doi:10.1063/1.1781382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bo L, Waugh RE (1989) Determination of bilayer membrane bending stiffness by tether formation from giant, thin-walled vesicles. Biophys J 55(3):509–517. doi:10.1016/S0006-3495(89)82844-9, S0006-3495(89)82844-9 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Evans E, Heinrich V, Leung A, Kinoshita K (2005) Nano- to microscale dynamics of P-selectin detachment from leukocyte interfaces. I. Membrane separation from the cytoskeleton. Biophys J 88(3):2288–2298. doi:10.1529/biophysj.104.051698, S0006-3495(05)73288-4 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heinrich V, Leung A, Evans E (2005) Nano- to microscale dynamics of P-selectin detachment from leukocyte interfaces. II. Tether flow terminated by P-selectin dissociation from PSGL-1. Biophys J 88(3):2299–2308. doi:10.1529/biophysj.104.051706, S0006-3495(05)73289-6 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dickinson RB (2009) Models for actin polymerization motors. J Math Biol 58(1–2):81–103. doi:10.1007/s00285-008-0200-4

    Article  PubMed  Google Scholar 

  30. Ashkin A (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 61(2):569–582. doi:10.1016/S0006-3495(92)81860-X, S0006-3495(92)81860-X [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gudbjartsson H, Patz S (1995) The Rician distribution of noisy MRI data. Magn Reson Med 34(6):910–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lemons DS (1997) Paul Langevin’s 1908 paper “On the theory of brownian motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)]. American Journal of Physics 65 (11):1079. doi:10.1119/1.18725

  33. Klafter J, Lim SC, Metzler R (2012) Fractional dynamics : recent advances. World Scientific, Singapore; Hackensack, NJ

    Google Scholar 

  34. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809. doi:10.1063/1.1785844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Warner AW (1972) Acousto-optic light deflectors using optical activity in paratellurite. J Appl Phys 43(11):4489. doi:10.1063/1.1660950

    Article  CAS  Google Scholar 

  36. Chang IC, Hecht DL (1975) Doubling acousto-optic deflector resolution utilizing second-order birefringent diffraction. Appl Phys Lett 27(10):517–517. doi:10.1063/1.88290

    Article  CAS  Google Scholar 

  37. Simmons RM, Finer JT, Chu S, Ja S (1996) Quantitative measurements of force and displacement using an optical trap. Biophys J 70(4):1813–1822. doi:10.1016/s0006-3495(96)79746-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ozbek H, Fair JA, Phillips SL (1977) Viscosity of aqueous sodium chloride solutions from 0 to 150 °C. (No. LBL-5931). Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US)

    Google Scholar 

  39. Le Gall A, Perronet K, Dulin D, Villing A, Bouyer P, Visscher K, Westbrook N (2010) Simultaneous calibration of optical tweezers spring constant and position detector response. Opt Express 18(25):26469–26474, doi: 208584 [pii]

    Article  PubMed  Google Scholar 

  40. Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instruments 75(3):594. doi:10.1063/1.1645654

    Article  Google Scholar 

  41. Sarshar M, Wong WT, Anvari B (2014) Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers. J Biomed Opt 19(11):115001. doi:10.1117/1.JBO.19.11.115001, 1934601 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  42. Higashida C, Miyoshi T, Fujita A, Oceguera-Yanez F, Monypenny J, Andou Y, Narumiya S, Watanabe N (2004) Actin polymerization-driven molecular movement of mDia1 in living cells. Science 303(5666):2007–2010. doi:10.1126/science.1093923, 303/5666/2007 [pii]

    Article  CAS  PubMed  Google Scholar 

  43. Caplow M (1994) The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice. J Cell Biol 127(3):779–788. doi:10.1083/jcb.127.3.779

    Article  CAS  PubMed  Google Scholar 

  44. Cross RA (2004) The kinetic mechanism of kinesin. Trends Biochem Sci 29(6):301–309. doi:10.1016/j.tibs.2004.04.010, S0968-0004(04)00103-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  45. Greenberg MJ, Ostap EM (2013) Regulation and control of myosin-I by the motor and light chain binding domains. Trends Cell Biol 23(2):81–89. doi:10.1016/j.tcb.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  46. Rief M, Rock RS, Mehta AD, Mooseker MS, Cheney RE, Spudich JA (2000) Myosin-V stepping kinetics: a molecular model for processivity. Proc Natl Acad Sci U S A 97(17):9482–9486, doi: 97/17/9482 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liang H, Vu KT, Krishnan P, Trang TC, Shin D, Kimel S, Berns MW (1996) Wavelength dependence of cell cloning efficiency after optical trapping. Biophys J 70(3):1529–1533. doi:10.1016/S0006-3495(96)79716-3, S0006-3495(96)79716-3 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leitz G, Fallman E, Tuck S, Axner O (2002) Stress response in caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence. Biophys J 82(4):2224–2231. doi:10.1016/S0006-3495(02)75568-9, S0006-3495(02)75568-9 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li DD, Ameer-Beg S, Arlt J, Tyndall D, Walker R, Matthews DR, Visitkul V, Richardson J, Henderson RK (2012) Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays. Sensors (Basel) 12(5):5650–5669. doi:10.3390/s120505650

    Article  CAS  Google Scholar 

  50. Donoho DL (1995) De-noising by soft-thresholding. IEEE Transactions on Information Theory 41(3):613–627

    Article  Google Scholar 

  51. Huang N, Shen Z, Long, SR, Wu M, Shih H, Zheng Q, Yen N, Tung C, Liu H (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 454 (1971):995, 903–995, 903. doi:10.1098/rspa.1998.0193

Download references

Acknowledgements

Research supported by NIH grants S10 RR027549-01, R21CA152779, and RO1DC00354 and by the Alliance for Nanohealth 1W81XWH-10-2-0125. We thank Dr. W. E. Brownell who contributed to the design of the instrument, and Dr T. Yuan who also contributed to the design helped assemble and collected the data shown in Fig. 3. We thank Dr. J. N. Myers for providing the HN-31 cancer cell line, and are grateful for discussions with Dr. F. A. Pereira.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda Farrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rajasekharan, V., Sreenivasan, V.K.A., Farrell, B. (2017). Force Measurements for Cancer Cells. In: Zeineldin, R. (eds) Cancer Nanotechnology. Methods in Molecular Biology, vol 1530. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6646-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6646-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6644-8

  • Online ISBN: 978-1-4939-6646-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics