Skip to main content
Log in

Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

The invention of optical tweezers more than three decades ago has opened new avenues in the study of the mechanical properties of biological molecules and cells. Quantitative force measurements still represent a challenging task in living cells due to the complexity of the cellular environment. Here, we review different methodologies to quantitatively measure the mechanical properties of living cells, the strength of adhesion/receptor bonds, and the active force produced during intracellular transport, cell adhesion, and migration. We discuss experimental strategies to attain proper calibration of optical tweezers and molecular resolution in living cells. Finally, we show recent studies on the transduction of mechanical stimuli into biomolecular and genetic signals that play a critical role in cell health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438(7067):460–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal R, Smart T, Nobre-Cardoso J, Richards C, Bhatnagar R, Tufail A, Shima D, Jones PH, Pavesio C (2016) Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique. Sci Rep 6(May 2015):1–12

    CAS  Google Scholar 

  • Almonacid M, Ahmed WW, Bussonnier M, Mailly P, Betz T, Voituriez R, Gov NS, Verlhac M-H (2015) Active diffusion positions the nucleus in mouse oocytes. Nat Cell Biol 17(4):470–479

    CAS  PubMed  Google Scholar 

  • Arya, Maneesh, Bahman Anvari, Gabriel M. Romo, Miguel A. Cruz, Jing-Fei Dong, Larry V McIntire, Joel L. Moake, and José A. Ló pez (2002) “Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: studies using optical tweezers”

  • Arya M, Kolomeisky AB, Romo GM, Cruz M a, López J a, Anvari B (2005) Dynamic force spectroscopy of glycoprotein Ib-IX and von Willebrand factor. Biophys J 88(6):4391–4401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24(4):156–159

    CAS  Google Scholar 

  • Ashkin A, Dziedzic JM (1971) Optical levitation by radiation pressure. Appl Phys Lett 19(8):283–285

    Google Scholar 

  • Ashkin A, Dziedzic JM (1989) Internal cell manipulation using infrared laser traps. Proc Natl Acad Sci U S A 86(20):7914–7918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashkin A, Dziedzik JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5):288–290

    CAS  PubMed  Google Scholar 

  • Ashkin A, Karin S, Dziedzic JM, Euteneuer U, Schliwa M (1990) Force generation of organelle transport measured in vivo by an infrared laser trap. Nature 348(6299):346–348

    CAS  PubMed  Google Scholar 

  • Baker M (2017) Lines of communication. a previously unappreciated form of cell-to-cell communication may help to spread cancers and infections. Nature 549:322–324

    CAS  PubMed  Google Scholar 

  • Barak P, Rai A, Rai P, Mallik R (2013) Quantitative optical trapping on single organelles in cell extract. Nat Methods 10(1):68–70

    CAS  PubMed  Google Scholar 

  • Bard L, Boscher C, Lambert M, Mege RM, Choquet D, Thoumine O (2008) A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration. J Neurosci 28(23):5879–5890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blehm BH, Schroer T a, Trybus KM, Chemla YR, Selvin PR (2013) In vivo optical trapping indicates kinesin’s stall force is reduced by dynein during intracellular transport. Proc Natl Acad Sci U S A 110(8):3381–3386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Botvinick, Elliot L. and Yingxiao Wang (2007) “Laser tweezers in the study of mechanobiology in live cells”

  • Brau RR, Ferrer JM, Lee H, Castro CE, Tam BK, Tarsa PB, Matsudaira P, Boyce MC, Kamm RD, Lang MJ (2007) Passive and active microrheology with optical tweezers. J Opt A Pure Appl Opt 9(8)

    CAS  Google Scholar 

  • Bunea AI, Glückstad J (2019) Strategies for optical trapping in biological samples: aiming at microrobotic surgeons. Laser Photonics Rev 13(4):1–17

    Google Scholar 

  • Capitanio M, Romano G, Ballerini R, Giuntini M, Pavone FS, Dunlap D, Finzi L (2002) Calibration of optical tweezers with differential interference contrast signals. Rev Sci Instrum 73(4):1687–1696

    CAS  Google Scholar 

  • Capitanio, Marco. 2017. “Optical tweezers.” in An introduction to Single Molecule Biophysics, edited by Y. L. Lyubchenko. CRC Press, Taylor & Francis group

  • Capitanio M, Canepari M, Maffei M, Beneventi D, Monico C, Vanzi F, Bottinelli R, Pavone FS (2012) Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke. Nat Methods 9(10):1013–1019

    CAS  PubMed  Google Scholar 

  • Capitanio and Pavone (2013) Interrogating biology with force: single molecule high-resolution measurements with optical tweezers. Biophys J 105(6)

  • Chen J (2014) Nanobiomechanics of living cells: a review. Interface Focus 4(2)

    PubMed  PubMed Central  Google Scholar 

  • Choquet D, Felsenfeld DP, Sheetz MP, Carolina N (1997) Extracellular matrix rigidity causes strengthening of integrin – cytoskeleton linkages. Cell 88(1):39–48

    CAS  PubMed  Google Scholar 

  • Coceano YMS, Ma W, Ndoye F, Venturelli L, Hussain I, Bonin S, Niemela J, Scoles G, Cojoc D (2016) Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation. Nanotechnology 27(6):65102

    CAS  Google Scholar 

  • Colom A, Derivery E, Soleimanpour S, Tomba C, Molin MD, Sakai N, González-Gaitán M, Matile S, Roux A (2018) A fluorescent membrane tension probe. Nat Chem 10(11):1118–1125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai J, Sheetz MP (1995) Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys J 68(3):988–996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dao M, Lim CT, Suresh S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 51(11–12):2259–2280

    Google Scholar 

  • Datar A, Bornschlögl T, Bassereau P, Prost J, Pullarkat PA (2015) Dynamics of membrane tethers reveal novel aspects of cytoskeleton-membrane interactions in axons. Biophys J 108(3):489–497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Derényi I, Gerbrand K, Van Duijn MM, Czövek A, Dogterom M, Prost J (2007) Membrane nanotubes. Lecture Notes in Physics 711:141–159

    Google Scholar 

  • Dudko OK, Hummer G, Szabo A (2008) Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc Natl Acad Sci U S A 105(41):15755–15760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dy K, Sugiura (2013) Localized cell stiffness measurement using axial movement of an optically trapped microparticle. J Biomed Opt 18(11):111411

    PubMed  Google Scholar 

  • Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72(4):1541–1555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fakhri N, Wessel AD, Willms C, Pasquali M, Klopfenstein DR, MacKintosh FC, Schmidt CF (2014) High-resolution mapping of intracellular fluctuations using carbon nanotubes. Science 344(6187):1031–1035

    CAS  PubMed  Google Scholar 

  • Falleroni F, Torre V, Cojoc D (2018) Cell mechanotransduction with piconewton forces applied by optical tweezers. Front Cell Neurosci 12:130

    PubMed  PubMed Central  Google Scholar 

  • Feng Y, Brazin KN, Kobayashi E, Mallis RJ, Reinherz EL, Lang MJ (2017) Mechanosensing drives acuity of Αβ T-cell recognition. Proc Natl Acad Sci 114(39):E8204–E8213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer M, Berg-Sorensen K (2007) Calibration of trapping force and response function of optical tweezers in viscoelastic media. J Optics A PureAppl Opt 9(8):S239–S250

    Google Scholar 

  • Fischer M, Richardson AC, Reihani SN, Oddershede LB, Berg-Sorensen K (2010) Active-passive calibration of optical tweezers in viscoelastic media. Rev Sci Instrum 81(1):15103

    Google Scholar 

  • Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. J Cell Biol 159(4):695–705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardini, Heissler SM, Arbore C, Yang Y, Sellers JR, Pavone FS, Capitanio M (2018) Dissecting myosin-5B mechanosensitivity and calcium regulation at the single molecule level. Nat Commun 9(1):1–12

    CAS  Google Scholar 

  • Gittes F, Schmidt CF (1998) Interference model for Back-focal-plane displacement detection in optical tweezers. Opt Lett 23:7–9

    CAS  PubMed  Google Scholar 

  • Gittes, F., B. Schnurr, P. D. Olmsted, F. C. Mackintosh, and C. F. Schmidt. 1997. Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations

    Google Scholar 

  • Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M, Yang MT, McLean MA, Sligar SG, Chen CS, Ha T, Schwartz MA (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466(7303):263–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greenleaf WJ, Woodside MT, Abbondanzieri EA, Block SM (2005) Passive all-optical force clamp for high-resolution laser trapping. Phys Rev Lett 95(20):1–4

    Google Scholar 

  • Gross SP, Welte MA, Block SM, Wieschaus EF (2002) Coordination of opposite-polarity microtubule motors. J Cell Biol 156(4):715–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guck R Ananthakrishnan TJ, Moon CC. Cunningham, and Käs J (2000) Optical Deformability of Soft Biological Dielectrics

  • Guck J, Ananthakrishnan R, Mahmood H, Moon TJ, Casey Cunningham C, Käs J (2001) The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J 81(2):767–784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guck J, Lautenschla¨ger F L¨s, Paschke S, Beil M (2010) Critical review: cellular mechanobiology and amoeboid Migrationw. This Journal Is c The Royal Society of Chemistry 2:575

    Google Scholar 

  • Guo M, Ehrlicher AJ, Jensen MH, Renz M, Moore JR, Goldman RD, Lippincott-Schwartz J, Mackintosh FC, Weitz DA (2014) Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 158(4):822–832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Ehrlicher AJ, Mahammad S, Fabich H, Jensen MH, Moore JR, Fredberg JJ, Goldman RD, Weitz DA (2013) The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics. Biophys J 105(7):1562–1568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guz N, Dokukin M, Kalaparthi V, Sokolov I (2014) If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys J 107(3):564–575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hendricks, Holzbaur, Goldman (2012) Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors. Proc Natl Acad Sci U S A 109(45):18447–18452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hochmuth RM, Mohandas N, Blackshear PL (1973) Measurement of the elastic Modulus for red cell membrane using a fluid mechanical technique. Biophys J 13(8):747–762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hochmuth RM, Shao JY, Dai J, Sheetz MP (1996) Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys J 70(1):358–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hörner F, Meissner R, Polali S, Pfeiffer J, Betz T, Denz C, Raz E (2017) Holographic optical tweezers-based in vivo manipulations in zebrafish embryos. J Biophotonics 10(11):1492–1501

    PubMed  Google Scholar 

  • Hu J, Jafari S, Han Y, Grodzinsky AJ, Cai S, Guo M (2017) Size- and speed-dependent mechanical behavior in living mammalian cytoplasm. Proc Natl Acad Sci 114(36):9529–9534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang G, Giannone G, Critchley DR, Fukumoto E, Sheetz MP (2003) Two-piconewton slip bond between fibronectin and the cytoskeleton depends on Talin. Nature 424(6946):334–337

    CAS  PubMed  Google Scholar 

  • Jun Y, Tripathy SK, Narayanareddy BRJ, Mattson-Hoss MK, Gross SP (2014) Calibration of optical tweezers for in vivo force measurements: how do different approaches compare? Biophys J 107(6):1474–1484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khatibzadeh N, Spector AA, Brownell WE, Anvari B (2013) Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics. PLoS One 8(2):57147

    Google Scholar 

  • Kim ST, Takeuchi K, Sun Z-YJ, Touma M, Castro CE, Fahmy A, Lang MJ, Wagner G, Reinherz EL (2009) The Alphabeta T cell receptor is an anisotropic mechanosensor. J Biol Chem 284(45):31028–31037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T-J, Joo C, Seong J, Vafabakhsh R, Botvinick EL, Berns MW, Palmer AE, Wang N, Ha T, Jakobsson E, Sun J, Wang Y (2015) Distinct mechanisms regulating mechanical force-induced Ca2+ signals at the plasma membrane and the ER in human MSCs. ELife 4:e04876

    PubMed  PubMed Central  Google Scholar 

  • Koster G, Vanduijn M, Hofs B, Dogterom M (2003) Membrane tube formation from giant vesicles by dynamic association of motor proteins. Cell Biology 23

  • Laib JA, Marin JA, Bloodgood RA, Guilford WH (2009) The reciprocal coordination and mechanics of molecular motors in living cells. Proc Natl Acad Sci 106(9):3190–3195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lieber AD, Schweitzer Y, Kozlov MM, Keren K (2015) Front-to-rear membrane tension gradient in rapidly moving cells. Biophys J 108(7):1599–1603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim CT, Dao M, Suresh S, Sow CH, Chew KT (2004) Large deformation of living cells using laser traps. Acta Mater 52(7):1837–1845

    CAS  Google Scholar 

  • Litvinov RI, Shuman H, Bennett JS, Weisel JW (2002) Binding strength and activation state of single fibrinogen-integrin pairs on living cells. Proc Natl Acad Sci U S A 99(11):7426–7431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal K, Asnacios A, Goud B, Manneville J-B (2016) Mapping intracellular mechanics on micropatterned substrates. Proc Natl Acad Sci 113(46):E7159–E7168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal K, Aroush DR-B, Graber ZT, Wu B, Park CY, Fredberg JJ, Guo W, Baumgart T, Janmey PA (2019) Soft hyaluronic gels promote cell spreading, stress fibers, focal adhesion, and membrane tension by phosphoinositide signaling, not traction force. ACS Nano 13(1):203–214

    CAS  PubMed  Google Scholar 

  • Mejean CO, Schaefer AW, Millman EA, Forscher P, Dufresne ER, Grzywa EL, Lee AC, Lee GU, Suter DM (2009) Multiplexed force measurements on live cells with holographic optical tweezers. Optics Express J Cell Biol 17(141):227–240

    Google Scholar 

  • Meloty-Kapella L, Shergill B, Kuon J, Botvinick E, Weinmaster G (2012) Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev Cell 22(6):1299–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mills JP, Diez-Silva M, Quinn DJ, Dao M, Lang MJ, Tan KSW, Lim CT, Milon G, David PH, Mercereau-Puijalon O, Bonnefoy S, Suresh S (2007) Effect of plasmodial RESA protein on deformability of human red blood cells harboring plasmodium falciparum. Proc Natl Acad Sci U S A 104(22):9213–9217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno D, Bacabac R, Tardin C, Head D, Schmidt CF (2009) High-resolution probing of cellular force transmission. Phys Rev Lett 102(16):1–4

    Google Scholar 

  • Mizuno D, Tardin C, Schmidt CF, Mackintosh FC (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science (New York, NY) 315(5810):370–373

    CAS  Google Scholar 

  • Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77

    CAS  PubMed  Google Scholar 

  • Nawaz, Schanila, Paula Sánchez, Kai Bodensiek, Sai Li, Mikael Simons, and Iwan A. T. Schaap. 2012. “Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations.” PLoS One 7(9)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809

    CAS  PubMed  Google Scholar 

  • Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6):491–505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nussenzveig (2018) Cell membrane biophysics with optical tweezers. Eur Biophys J 47(5):499–514

    CAS  PubMed  Google Scholar 

  • Parker KH, Winlove CP (1999) The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell. Biophys J 77(6):3096–3107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez TD, Tamada M, Sheetz MP, James Nelson W (2008) Immediate-early signaling induced by E-cadherin engagement and adhesion. J Biol Chem 283(8):5014–5022

    CAS  PubMed  Google Scholar 

  • Pontes B, Viana NB, Salgado LT, Farina M, Moura Neto V, Nussenzveig HM (2011) Cell cytoskeleton and tether extraction. Biophys J 101(1):43–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pralle A, Prummer M, Florin EL, Stelzer EHK, Horber JKH (1999) Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc Res Tech 44(5):378–386

    CAS  PubMed  Google Scholar 

  • Rai, A. K., A. Rai, A. J. Ramaiya, R. Jha, and R. Mallik. 2013. “Molecular adaptations allow dynein to generate large collective forces inside cells.” Cell 152(1–2):172–82

    CAS  PubMed  Google Scholar 

  • Raucher D, Sheetz MP (1999) Characteristics of a membrane reservoir buffering membrane tension. 77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ricketts SN, Ross JL, Robertson-Anderson RM (2018) Co-entangled actin-microtubule composites exhibit tunable stiffness and power-law stress relaxation. Biophys J 115(6):1055–1067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roux, Giovanni Cappello, Jean Cartaud, Jacques Prost, Bruno Goud, and Patricia Bassereau. (2002) A Minimal System Allowing Tubulation with Molecular Motors Pulling on Giant Liposomes

  • Sachs, Frederick. 2018. “Biophysical perspective mechanical transduction and the dark energy of Biology”

    Google Scholar 

  • Sako Y, Nagafuchi A, Tsukita S, Takeichi M, Kusumi A (1998) Cytoplasmic regulation of the movement of E-cadherin on the free cell surface as studied by optical tweezers and single particle tracking: corralling and tethering by the membrane skeleton. J Cell Biol 140(5):1227–1240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlosser F, Rehfeldt F, Schmidt CF (2014) Force fluctuations in three-dimensional suspended fibroblasts. Philosophical Transactions of the Royal Society B: Biological Sciences 370(1661):20140028–20140028

    Google Scholar 

  • Schreiner, Sarah M., Peter K. Koo, Yao Zhao, Simon G. J. Mochrie, and Megan C. King. 2015. “The tethering of chromatin to the nuclear envelope supports nuclear mechanics.” Nat Commun 6:7159

  • Schuh, Melina (2013) “Europe PMC Funders Group an actin-dependent mechanism for long range vesicle transport.” 13(12):1431–1436

  • Schwingel Dekan, Melanie, Martin Bastmeyer Referent, Martin Bastmeyer Co-Referent, and Ulrich Nienhaus (2012) “Multiple trap optical tweezers for cell force measurements”

  • Schwingel M, Bastmeyer M (2013) Force mapping during the formation and maturation of cell adhesion sites with multiple optical tweezers. PLoS One

  • Sheetz MP (2001) Cell control by membrane-cytoskeleton adhesion. Nat Rev Mol Cell Biol 2(5):392–396

    CAS  PubMed  Google Scholar 

  • Shergill B, Meloty-Kapella L, Musse AA, Weinmaster G, Botvinick E (2012) Optical tweezers studies on notch: single-molecule interaction strength is independent of ligand endocytosis. Dev Cell 22(6):1313–1320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shubeita GT, Tran SL, Xu J, Vershinin M, Cermelli S, Cotton SL, Welte MA, Gross SP (2008) Consequences of motor copy number on the intracellular transport of Kinesin-1-driven lipid droplets. Cell 135(6):1098–1107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sims PA, Xie XS (2009) Probing dynein and kinesin stepping with mechanical manipulation in a living cell. Chemphyschem 10(9–10):1511–1516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simunovic M, Manneville J-B, Renard H-F, Evergren E, Raghunathan K, Bhatia D, Kenworthy AK, Voth GA, Prost J, McMahon HT, Johannes L, Bassereau P, Callan-Jones A (2017) Friction mediates scission of tubular membranes scaffolded by BAR proteins. Cell 170(1):172–184.e11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sleep J, Wilson D, Simmons R, Gratzer W (1999) Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. Biophys J 77(6):3085–3095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M, Seufferlein T (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 1(1):15–30

    CAS  PubMed  Google Scholar 

  • Svoboda K, Schmidt CF, Branton D, Block SM (1992) Conformation and elasticity of the isolated red blood cell membrane skeleton. Biophys J 63(3):784–793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Y, Kong C-w, Chen S, Cheng SH, Li RA, Dong S (2012) Probing the mechanobiological properties of human embryonic stem cells in cardiac differentiation by optical tweezers. J Biomech 45(1):123–128

    PubMed  Google Scholar 

  • Tassieri M (2015) Linear microrheology with optical tweezers of living cells ‘is not an option’! Soft Matter 11(29):5792–5798

    CAS  PubMed  Google Scholar 

  • Tassieri M (2019) Microrheology with optical tweezers: peaks & troughs. Curr Opin Colloid Interface Sci 43:39–51

    CAS  Google Scholar 

  • Thoumine O, Kocian P, Kottelat A, Meister J-J (2000) Short-term binding of fibroblasts to fibronectin: optical tweezers experiments and probabilistic analysis. Eur Biophys J 29:398–408

    CAS  PubMed  Google Scholar 

  • Van Vliet K, Bao G, Suresh S (2003) The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Mater 51(19):5881–5905

    Google Scholar 

  • Wang Y, Botvinick EL, Zhao Y, Berns MW, Usami S, Tsien RY, Chien S (2005) Visualizing the mechanical activation of Src. Nature 434(7036):1040–1045

    CAS  PubMed  Google Scholar 

  • Waugh RE, Hochmuth RM (1987) Mechanical equilibrium of thick, hollow, liquid membrane cylinders. Biophys J 52(3):391–400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei M-T, Zaorski A, Yalcin HC, Wang J, Hallow M, Ghadiali SN, Chiou A, Daniel Ou-Yang H (2008) A comparative study of living cell micromechanical properties by oscillatory optical tweezers. Opt Express 16(12):8594

    CAS  PubMed  Google Scholar 

  • Weisel JW, Shuman H, Litvinov RI (2003) Protein–protein unbinding induced by force: single-molecule studies. Curr Opin Struct Biol 13(2):227–235

    CAS  PubMed  Google Scholar 

  • Welte MA, Gross SP, Postner M, Block SM, Wieschaus EF (1998) Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell 92(4):547–557

    CAS  PubMed  Google Scholar 

  • Yang T, Bragheri F, Minzioni P, Yang T, Bragheri F, Minzioni P (2016) A comprehensive review of optical stretcher for cell mechanical characterization at single-cell level. Micromachines 7(5):90

    PubMed Central  Google Scholar 

  • Yousafzai N, Coceano N, Bonin S, Cojoc (2016) Substrate-dependent cell elasticity measured by optical tweezers indentation. Opt Lasers Eng 76:27–33

    Google Scholar 

  • Zhou ZL, Hui TH, Tang B, Ngan AHW (2014) Accurate measurement of stiffness of leukemia cells and leukocytes using an optical trap by a rate-jump method. RSC Adv 4(17):8453

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 654148 Laserlab-Europe and by Ente Cassa di Risparmio di Firenze.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Capitanio.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbore, C., Perego, L., Sergides, M. et al. Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction. Biophys Rev 11, 765–782 (2019). https://doi.org/10.1007/s12551-019-00599-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-019-00599-y

Keywords

Navigation