Skip to main content

In Vitro Assays to Identify Antibiotics Targeting DNA Metabolism

  • Protocol
  • First Online:
Antibiotics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1520))

Abstract

DNA metabolism embodies a number of biochemical pathways, which include targets of clinically used antibiotics as well as those that are only being explored as potential targets for inhibitory compounds. We give an overview of representative cell-based and enzymatic assays suitable for high-throughput-driven search for novel DNA metabolism inhibitors of established and novel DNA metabolism targets in bacteria. The protocol for a colorimetric coupled primase-inorganic pyrophosphatase assay developed by our group is described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fan J, de Jonge BL, MacCormack K, Sriram S, McLaughlin RE, Plant H, Preston M, Fleming PR, Albert R, Foulk M, Mills SD (2014) A novel high-throughput cell-based assay aimed at identifying inhibitors of DNA metabolism in bacteria. Antimicrob Agents Chemother 58(12):7264–7272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Craig NL, Roberts JW (1981) Function of nucleoside triphosphate and polynucleotide in Escherichia coli recA protein-directed cleavage of phage lambda repressor. J Biol Chem 256(15):8039–8044

    CAS  PubMed  Google Scholar 

  3. Brent R, Ptashne M (1981) Mechanism of action of the lexA gene product. Proc Natl Acad Sci U S A 78(7):4204–4208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang JD, Sanders GM, Grossman AD (2007) Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 128(5):865–875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moir DT, Ming D, Opperman T, Schweizer HP, Bowlin TL (2007) A high-throughput, homogeneous, bioluminescent assay for Pseudomonas aeruginosa gyrase inhibitors and other DNA-damaging agents. J Biomol Screen 12(6):855–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brazas MD, Hancock RE (2005) Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49(8):3222–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hirota Y, Ryter A, Jacob F (1968) Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division. Cold Spring Harb Symp Quant Biol 33:677–693

    Article  CAS  PubMed  Google Scholar 

  8. Kellenberger-Gujer G, Podhajska AJ, Caro L (1978) A cold sensitive dnaA mutant of E. coli which overinitiates chromosome replication at low temperature. Mol Gen Genet 162(1):9–16

    Article  CAS  PubMed  Google Scholar 

  9. Fossum S, De Pascale G, Weigel C, Messer W, Donadio S, Skarstad K (2008) A robust screen for novel antibiotics: specific knockout of the initiator of bacterial DNA replication. FEMS Microbiol Lett 281(2):210–214.

    Article  CAS  PubMed  Google Scholar 

  10. Kogoma T, von Meyenburg K (1983) The origin of replication, oriC, and the dnaA protein are dispensable in stable DNA replication (sdrA) mutants of Escherichia coli K-12. EMBO J 2(3):463–468

    CAS  PubMed  PubMed Central  Google Scholar 

  11. de Massy B, Fayet O, Kogoma T (1984) Multiple origin usage for DNA replication in sdrA(rnh) mutants of Escherichia coli K-12. Initiation in the absence of oriC. J Mol Biol 178(2):227–236

    Article  PubMed  Google Scholar 

  12. Cromie GA (2009) Phylogenetic ubiquity and shuffling of the bacterial RecBCD and AddAB recombination complexes. J Bacteriol 191(16):5076–5084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Amundsen SK, Spicer T, Karabulut AC, Londono LM, Eberhart C, Fernandez Vega V, Bannister TD, Hodder P, Smith GR (2012) Small-molecule inhibitors of bacterial AddAB and RecBCD helicase-nuclease DNA repair enzymes. ACS Chem Biol 7(5):879–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100(1):95–97

    Article  CAS  PubMed  Google Scholar 

  15. Van Veldhoven PP, Mannaerts GP (1987) Inorganic and organic phosphate measurements in the nanomolar range. Anal Biochem 161(1):45–48

    Article  PubMed  Google Scholar 

  16. de Groot H, Noll T (1985) Enzymic determination of inorganic phosphates, organic phosphates and phosphate-liberating enzymes by use of nucleoside phosphorylase-xanthine oxidase (dehydrogenase)-coupled reactions. Biochem J 230(1):255–260

    Article  PubMed  PubMed Central  Google Scholar 

  17. Humnabadkar V, Madhavapeddi P, Basavarajappa H, Sheikh MG, Rane R, Basu R, Verma P, Sundaram A, Mukherjee K, de Sousa SM (2015) Assays, surrogates, and alternative technologies for a TB lead identification program targeting DNA gyrase ATPase. J Biomol Screen 20(2):265–274.

    Article  PubMed  Google Scholar 

  18. Biswas T, Resto-Roldan E, Sawyer SK, Artsimovitch I, Tsodikov OV (2013) A novel non-radioactive primase-pyrophosphatase activity assay and its application to the discovery of inhibitors of Mycobacterium tuberculosis primase DnaG. Nucleic Acids Res 41(4), e56.

    Article  CAS  PubMed  Google Scholar 

  19. Biswas T, Green KD, Garneau-Tsodikova S, Tsodikov OV (2013) Discovery of inhibitors of Bacillus anthracis primase DnaG. Biochemistry 52(39):6905–6910.

    Article  CAS  PubMed  Google Scholar 

  20. McKelvie JC, Richards MI, Harmer JE, Milne TS, Roach PL, Oyston PC (2013) Inhibition of Yersinia pestis DNA adenine methyltransferase in vitro by a stibonic acid compound: identification of a potential novel class of antimicrobial agents. Br J Pharmacol 168(1):172–188.

    Article  CAS  PubMed  Google Scholar 

  21. Tholander F, Sjoberg BM (2012) Discovery of antimicrobial ribonucleotide reductase inhibitors by screening in microwell format. Proc Natl Acad Sci U S A 109(25):9798–9803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jude KM, Hartland A, Berger JM (2013) Real-time detection of DNA topological changes with a fluorescently labeled cruciform. Nucleic Acids Res 41(13), e133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taylor JA, Mitchenall LA, Rejzek M, Field RA, Maxwell A (2013) Application of a novel microtitre plate-based assay for the discovery of new inhibitors of DNA gyrase and DNA topoisomerase VI. PLoS One 8(2), e58010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buhler C, Gadelle D, Forterre P, Wang JC, Bergerat A (1998) Reconstitution of DNA topoisomerase VI of the thermophilic archaeon Sulfolobus shibatae from subunits separately overexpressed in Escherichia coli. Nucleic Acids Res 26(22):5157–5162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Finlay GJ, Atwell GJ, Baguley BC (1999) Inhibition of the action of the topoisomerase II poison amsacrine by simple aniline derivatives: evidence for drug-protein interactions. Oncol Res 11(6):249–254

    CAS  PubMed  Google Scholar 

  26. Bojanowski K, Lelievre S, Markovits J, Couprie J, Jacquemin-Sablon A, Larsen AK (1992) Suramin is an inhibitor of DNA topoisomerase II in vitro and in Chinese hamster fibrosarcoma cells. Proc Natl Acad Sci U S A 89(7):3025–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chauhan PM, Srivastava SK (2001) Present trends and future strategy in chemotherapy of malaria. Curr Med Chem 8(13):1535–1542

    Article  CAS  PubMed  Google Scholar 

  28. Cheng B, Cao S, Vasquez V, Annamalai T, Tamayo-Castillo G, Clardy J, Tse-Dinh YC (2013) Identification of anziaic acid, a lichen depside from Hypotrachyna sp., as a new topoisomerase poison inhibitor. PLoS One 8(4), e60770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mills SD, Eakin AE, Buurman ET, Newman JV, Gao N, Huynh H, Johnson KD, Lahiri S, Shapiro AB, Walkup GK, Yang W, Stokes SS (2011) Novel bacterial NAD+-dependent DNA ligase inhibitors with broad-spectrum activity and antibacterial efficacy in vivo. Antimicrob Agents Chemother 55(3):1088–1096.

    Article  CAS  PubMed  Google Scholar 

  30. Shapiro AB, Eakin AE, Walkup GK, Rivin O (2011) A high-throughput fluorescence resonance energy transfer-based assay for DNA ligase. J Biomol Screen 16(5):486–493.

    Article  CAS  PubMed  Google Scholar 

  31. Glaser BT, Malerich JP, Duellman SJ, Fong J, Hutson C, Fine RM, Keblansky B, Tang MJ, Madrid PB (2011) A high-throughput fluorescence polarization assay for inhibitors of gyrase B. J Biomol Screen 16(2):230–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peterson EJ, Janzen WP, Kireev D, Singleton SF (2012) High-throughput screening for RecA inhibitors using a transcreener adenosine 5′-O-diphosphate assay. Assay Drug Dev Technol 10(3):260–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee AM, Wigle TJ, Singleton SF (2007) A complementary pair of rapid molecular screening assays for RecA activities. Anal Biochem 367(2):247–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang JH, Chung TDY, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73.

    Article  CAS  PubMed  Google Scholar 

  35. Gajadeera C, Willby MJ, Green KD, Shaul P, Fridman M, Garneau-Tsodikova S, Posey JE, Tsodikov OV (2015) Antimycobacterial activity of DNA intercalator inhibitors of Mycobacterium tuberculosis primase DnaG. J Antibiot (Tokyo) 68(3):153–157.

    Article  CAS  Google Scholar 

  36. Biswas T, Tsodikov OV (2008) Hexameric ring structure of the N-terminal domain of Mycobacterium tuberculosis DnaB helicase. FEBS J 275(12):3064–3071.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Tsodikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pang, A.H., Garneau-Tsodikova, S., Tsodikov, O.V. (2017). In Vitro Assays to Identify Antibiotics Targeting DNA Metabolism. In: Sass, P. (eds) Antibiotics. Methods in Molecular Biology, vol 1520. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6634-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6634-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6632-5

  • Online ISBN: 978-1-4939-6634-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics