Skip to main content

Secondary Screening for Inherited Pancreatic Ductal Adenocarcinoma

  • Living reference work entry
  • First Online:
Pancreatic Cancer

Abstract

The prevalence of pancreatic cancer is too low, and the accuracy of current screening methods is not high enough to permit general population screening. Secondary screening in high-risk groups may be possible for the disease or its precursors. Pilot screening studies have been initiated and are generating data on the nature of inherited predisposition and the early stages of cancer development. It is already apparent that the specificity and sensitivity of secondary screening tests need to be improved. In this chapter, the preliminary evidence from the pioneering screening studies will be considered in order to discuss which participants should be recruited into future pilot studies and how biomarkers may in future be combined with imaging to reduce the number of missed cancers and premature surgical interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  2. Rahib L, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21.

    Article  CAS  PubMed  Google Scholar 

  3. Mancuso A, Calabro F, Sternberg CN. Current therapies and advances in the treatment of pancreatic cancer. Crit Rev Oncol Hematol. 2006;58(3):231–41.

    Article  PubMed  Google Scholar 

  4. Conlon KC, Klimstra DS, Brennan MF. Long-term survival after curative resection for pancreatic ductal adenocarcinoma. Clinicopathologic analysis of 5-year survivors. Ann Surg. 1996;223(3):273–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sirri E, et al. Recent trends in survival of patients with pancreatic cancer in Germany and the United States. Pancreas. 2016;45(6):908–14.

    Article  PubMed  Google Scholar 

  6. Neoptolemos JP, et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet. 2017;389(10073):1011–24.

    Article  CAS  PubMed  Google Scholar 

  7. Winter JM, et al. 1423 pancreaticoduodenectomies for pancreatic cancer: a single-institution experience. J Gastrointest Surg. 2006;10(9):1199–210. discussion 1210-1

    Article  PubMed  Google Scholar 

  8. Helmstaedter L, Riemann JF. Pancreatic cancer-EUS and early diagnosis. Langenbecks Arch Surg. 2008;393(6):923–7.

    Article  PubMed  Google Scholar 

  9. Poruk KE, et al. Screening for pancreatic cancer: why, how, and who? Ann Surg. 2013;257(1):17–26.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Luo J, et al. Interpreting trends of pancreatic cancer incidence and mortality: a nation-wide study in Sweden (1960-2003). Cancer Causes Control. 2008;19(1):89–96.

    Article  PubMed  Google Scholar 

  11. Alexakis N, et al. Current standards of surgery for pancreatic cancer. Br J Surg. 2004;91(11):1410–27.

    Article  CAS  PubMed  Google Scholar 

  12. Brand RE, et al. Advances in counselling and surveillance of patients at risk for pancreatic cancer. Gut. 2007;56(10):1460–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Canto MI, et al. International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut. 2013;62(3):339–47.

    Article  PubMed  Google Scholar 

  14. Klein AP, et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res. 2004;64(7):2634–8.

    Article  CAS  PubMed  Google Scholar 

  15. Howes N, et al. Clinical and genetic characteristics of hereditary pancreatitis in Europe. Clin Gastroenterol Hepatol. 2004;2(3):252–61.

    Article  CAS  PubMed  Google Scholar 

  16. Algul H, et al. Mechanisms of disease: chronic inflammation and cancer in the pancreas – a potential role for pancreatic stellate cells? Nat Clin Pract Gastroenterol Hepatol. 2007;4(8):454–62.

    Article  PubMed  CAS  Google Scholar 

  17. Latchford A, et al. Peutz-Jeghers syndrome and screening for pancreatic cancer. Br J Surg. 2006;93(12):1446–55.

    Article  CAS  PubMed  Google Scholar 

  18. Giardiello FM, et al. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology. 2000;119(6):1447–53.

    Article  CAS  PubMed  Google Scholar 

  19. Hahn SA, et al. BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst. 2003;95(3):214–21.

    Article  CAS  PubMed  Google Scholar 

  20. van Asperen CJ, et al. Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet. 2005;42(9):711–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pandharipande PV, et al. Targeted screening of individuals at high risk for pancreatic cancer: results of a simulation model. Radiology. 2015;275(1):177–87.

    Article  PubMed  Google Scholar 

  22. Schutte M, et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res. 1997;57(15):3126–30.

    CAS  PubMed  Google Scholar 

  23. Vasen HF, et al. Risk of developing pancreatic cancer in families with familial atypical multiple mole melanoma associated with a specific 19 deletion of p16 (p16-Leiden). Int J Cancer. 2000;87(6):809–11.

    Article  CAS  PubMed  Google Scholar 

  24. Al-Sukhni W, et al. Germline BRCA1 mutations predispose to pancreatic adenocarcinoma. Hum Genet. 2008;

    Google Scholar 

  25. Roberts NJ, et al. Whole genome sequencing defines the genetic heterogeneity of familial pancreatic cancer. Cancer Discov. 2016;6(2):166–75.

    Article  CAS  PubMed  Google Scholar 

  26. Tersmette AC, et al. Increased risk of incident pancreatic cancer among first-degree relatives of patients with familial pancreatic cancer. Clin Cancer Res. 2001;7:738–44.

    CAS  PubMed  Google Scholar 

  27. Del Chiaro M, et al. Cancer risk among the relatives of patients with pancreatic ductal adenocarcinoma. Pancreatology. 2007;7(5–6):459–69.

    PubMed  Google Scholar 

  28. Greenhalf W, Vitone LJ, Neoptolemos J. Familial pancreatic cancer. In: Beger H-G, et al., editors. The pancreas: an integrated textbook of basic science, medicine and surgery. Oxford: Blackwell; 2008. p. 591–600.

    Chapter  Google Scholar 

  29. McFaul C, et al. Anticipation in familial pancreatic cancer. Gut. 2006;55(2):252–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ekbom A, Hunter D. Pancreatic cancer. In: Adami H, Hunter D, Trichopoulos D, editors. Textbook of cancer epidemiology. New York: Oxford University Press; 2002. p. 233–47.

    Google Scholar 

  31. Silverman DT, et al. Cigarette smoking and pancreas cancer: a case-control study based on direct interviews. J Natl Cancer Inst. 1994;86(20):1510–6.

    Article  CAS  PubMed  Google Scholar 

  32. Fuchs CS, et al. A prospective study of cigarette smoking and the risk of pancreatic cancer. Arch Intern Med. 1996;156(19):2255–60.

    Article  CAS  PubMed  Google Scholar 

  33. Hassan MM, et al. Risk factors for pancreatic cancer: case-control study. Am J Gastroenterol. 2007;102(12):2696–707.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rulyak SJ, et al. Risk factors for the development of pancreatic cancer in familial pancreatic cancer kindreds. Gastroenterology. 2003;124(5):1292–9.

    Article  PubMed  Google Scholar 

  35. Rebours V, et al. Risk of pancreatic adenocarcinoma in patients with hereditary pancreatitis: a national exhaustive series. Am J Gastroenterol. 2008;103(1):111–9.

    Article  PubMed  Google Scholar 

  36. Chen J, et al. Polymorphisms of p21 and p27 jointly contribute to an earlier age at diagnosis of pancreatic cancer. Cancer Lett. 2008;

    Google Scholar 

  37. Wang W, et al. PancPRO: risk assessment for individuals with a family history of pancreatic cancer. J Clin Oncol. 2007;25(11):1417–22.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jones R, et al. Alarm symptoms in early diagnosis of cancer in primary care: cohort study using General Practice Research Database. BMJ. 2007;334(7602):1040.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Greenhalf W, Neoptolemos JP. Increasing survival rates of patients with pancreatic cancer by earlier identification. Nat Clin Pract Oncol. 2006;3(7):346–7.

    Article  PubMed  Google Scholar 

  40. Chari ST, et al. Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology. 2008;134(1):95–101.

    Article  CAS  PubMed  Google Scholar 

  41. Pannala R, et al. Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. Gastroenterology. 2008;134(4):981–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fernandez E, et al. Family history and the risk of liver, gallbladder, and pancreatic cancer. Cancer Epidemiol Biomark Prev. 1994;3:209–12.

    CAS  Google Scholar 

  43. Canto MI, et al. Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology. 2012;142(4):796–804.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kalra MK, et al. State-of-the-art imaging of pancreatic neoplasms. Br J Radiol. 2003;76(912):857–65.

    Article  CAS  PubMed  Google Scholar 

  45. Hanada K, et al. Effective screening for early diagnosis of pancreatic cancer. Best Pract Res Clin Gastroenterol. 2015;29(6):929–39.

    Article  PubMed  Google Scholar 

  46. Hruban RH, et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol. 2004;28(8):977–87.

    Article  PubMed  Google Scholar 

  47. Canto MI, et al. Screening for pancreatic neoplasia in high-risk individuals: an EUS-based approach. Clin Gastroenterol Hepatol. 2004;2(7):606–21.

    Article  PubMed  Google Scholar 

  48. Chen J, et al. Diagnostic accuracy of endoscopic ultrasound-guided fine-needle aspiration for solid pancreatic lesion: a systematic review. J Cancer Res Clin Oncol. 2012;138(9):1433–41.

    Article  PubMed  Google Scholar 

  49. Puli SR, et al. How good is endoscopic ultrasound-guided fine-needle aspiration in diagnosing the correct etiology for a solid pancreatic mass?: a meta-analysis and systematic review. Pancreas. 2013;42(1):20–6.

    Article  PubMed  Google Scholar 

  50. Barthet M, et al. Endoscopic ultrasonographic diagnosis of pancreatic cancer complicating chronic pancreatitis. Endoscopy. 1996;28(6):487–91.

    Article  CAS  PubMed  Google Scholar 

  51. Varadarajulu S, Tamhane A, Eloubeidi MA. Yield of EUS-guided FNA of pancreatic masses in the presence or the absence of chronic pancreatitis. Gastrointest Endosc. 2005;62(5):728–36. quiz 751, 753

    Article  PubMed  Google Scholar 

  52. Gangi S, et al. Time interval between abnormalities seen on CT and the clinical diagnosis of pancreatic cancer: retrospective review of CT scans obtained before diagnosis. AJR Am J Roentgenol. 2004;182(4):897–903.

    Article  PubMed  Google Scholar 

  53. Saisho H, Yamaguchi T. Diagnostic imaging for pancreatic cancer: computed tomography, magnetic resonance imaging, and positron emission tomography. Pancreas. 2004;28(3):273–8.

    Article  PubMed  Google Scholar 

  54. Semelka RC, et al. Imaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI. J Magn Reson Imaging. 2007;25(5):900–9.

    Article  PubMed  Google Scholar 

  55. Diehl SJ, et al. MR imaging of pancreatic lesions. Comparison of manganese-DPDP and gadolinium chelate. Invest Radiol. 1999;34(9):589–95.

    Article  CAS  PubMed  Google Scholar 

  56. Del Chiaro M, et al. Short-term results of a magnetic resonance imaging-based swedish screening program for individuals at risk for pancreatic cancer. JAMA Surg. 2015;150(6):512–8.

    Article  PubMed  Google Scholar 

  57. Harinck F, et al. A multicentre comparative prospective blinded analysis of EUS and MRI for screening of pancreatic cancer in high-risk individuals. Gut. 2016;65(9):1505–13.

    Article  CAS  PubMed  Google Scholar 

  58. Bartsch DK, et al. Refinement of screening for familial pancreatic cancer. Gut. 2016;65(8):1314–21.

    Article  CAS  PubMed  Google Scholar 

  59. Matsumoto I, et al. 18-Fluorodeoxyglucose positron emission tomography does not aid in diagnosis of pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol. 2013;11(6):712–8.

    Article  PubMed  Google Scholar 

  60. Baiocchi GL, et al. Possible additional value of 18FDG-PET in managing pancreas intraductal papillary mucinous neoplasms: preliminary results. J Exp Clin Cancer Res. 2008;27:10.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yan L, et al. Molecular analysis to detect pancreatic ductal adenocarcinoma in high-risk groups. Gastroenterology. 2005;128(7):2124–30.

    Article  CAS  PubMed  Google Scholar 

  62. Nicholson JA, et al. Incidence of post-ERCP pancreatitis from direct pancreatic juice collection in hereditary pancreatitis and familial pancreatic cancer before and after the introduction of prophylactic pancreatic stents and rectal diclofenac. Pancreas. 2015;44(2):260–5.

    Article  CAS  PubMed  Google Scholar 

  63. Eshleman JR, et al. KRAS and guanine nucleotide-binding protein mutations in pancreatic juice collected from the duodenum of patients at high risk for neoplasia undergoing endoscopic ultrasound. Clin Gastroenterol Hepatol. 2015;13(5):963–9. e4

    Article  CAS  PubMed  Google Scholar 

  64. Suenaga M, et al. Using an endoscopic distal cap to collect pancreatic fluid from the ampulla (with video). Gastrointest Endosc. 2017.

    Google Scholar 

  65. Vasen H, et al. Benefit of surveillance for pancreatic cancer in high-risk individuals: outcome of long-term prospective follow-up studies from three European expert centers. J Clin Oncol. 2016;34(17):2010–9.

    Article  CAS  PubMed  Google Scholar 

  66. Ben Q, et al. The relationship between new-onset diabetes mellitus and pancreatic cancer risk: a case-control study. Eur J Cancer. 2011;47(2):248–54.

    Article  PubMed  Google Scholar 

  67. Aggarwal G, et al. Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in beta cells and mice. Gastroenterology. 2012;143(6):1510–7. e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sah RP, et al. New insights into pancreatic cancer-induced paraneoplastic diabetes. Nat Rev Gastroenterol Hepatol. 2013;10(7):423–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Boursi B, et al. A clinical prediction model to assess risk for pancreatic cancer among patients with new-onset diabetes. Gastroenterology. 2017;152(4):840–50. e3

    Article  PubMed  Google Scholar 

  70. Locker GY, et al. ASCO 2006 Update of recommendations for the use of Tumor Markers in gastrointestinal cancer. J Clin Oncol. 2006;24(33):5313–27.

    Article  CAS  PubMed  Google Scholar 

  71. Wong D, et al. Serum CA19-9 decline compared to radiographic response as a surrogate for clinical outcomes in patients with metastatic pancreatic cancer receiving chemotherapy. Pancreas. 2008;37(3):269–74.

    Article  PubMed  Google Scholar 

  72. Marrelli D, et al. CA19-9 serum levels in obstructive jaundice: clinical value in benign and malignant conditions. Am J Surg. 2009;198(3):333–9.

    Article  CAS  PubMed  Google Scholar 

  73. Kim JE, et al. Clinical usefulness of carbohydrate antigen 19-9 as a screening test for pancreatic cancer in an asymptomatic population. J Gastroenterol Hepatol. 2004;19(2):182–6.

    Article  PubMed  Google Scholar 

  74. Jenkinson C, et al. Decreased serum thrombospondin-1 levels in pancreatic cancer patients up to 24 months prior to clinical diagnosis: association with diabetes mellitus. Clin Cancer Res. 2015;

    Google Scholar 

  75. Miyazono F, et al. Molecular detection of circulating cancer cells during surgery in patients with biliary-pancreatic cancer. Am J Surg. 1999;177(6):475–9.

    Article  CAS  PubMed  Google Scholar 

  76. Kurihara T, et al. Detection of circulating tumor cells in patients with pancreatic cancer: a preliminary result. J Hepato-Biliary-Pancreat Surg. 2008;15(2):189–95.

    Article  Google Scholar 

  77. Rhim AD, et al. EMT and dissemination precede pancreatic tumor formation. Cell. 2012;148(1–2):349–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gorges TM, et al. Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer. 2012;12:178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Khoja L, et al. A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer. 2012;106(3):508–16.

    Article  CAS  PubMed  Google Scholar 

  80. Rhim AD, et al. Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology. 2014;146(3):647–51.

    Article  PubMed  Google Scholar 

  81. Thege FI, et al. Microfluidic immunocapture of circulating pancreatic cells using parallel EpCAM and MUC1 capture: characterization, optimization and downstream analysis. Lab Chip. 2014;14(10):1775–84.

    Article  CAS  PubMed  Google Scholar 

  82. Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem. 2015;61(1):112–23.

    Article  CAS  PubMed  Google Scholar 

  83. Olsson E, et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol Med. 2015;7(8):1034–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tabernero J, et al. Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: a retrospective, exploratory analysis of the CORRECT trial. Lancet Oncol. 2015;16(8):937–48.

    Article  CAS  PubMed  Google Scholar 

  85. Bagul A, et al. Quantitative analysis of plasma DNA in severe acute pancreatitis. JOP. 2006;7(6):602–7.

    PubMed  Google Scholar 

  86. Holdenrieder S, et al. Nucleosomes in serum of patients with benign and malignant diseases. Int J Cancer. 2001;95(2):114–20.

    Article  CAS  PubMed  Google Scholar 

  87. Holdenrieder S, et al. Clinical relevance of circulating nucleosomes in cancer. Ann N Y Acad Sci. 2008;1137:180–9.

    Article  CAS  PubMed  Google Scholar 

  88. Magistrelli P, et al. K-ras mutations in circulating DNA from pancreatic and lung cancers: bridging methodology for a common validation of the molecular diagnosis value. Pancreas. 2008;37(1):101–2.

    Article  PubMed  Google Scholar 

  89. Thompson JC, et al. Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of cell-free circulating tumor DNA. Clin Cancer Res. 2016;22(23):5772–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen Z, et al. Enhanced sensitivity for detection of low-level germline mosaic RB1 mutations in sporadic retinoblastoma cases using deep semiconductor sequencing. Hum Mutat. 2014;35(3):384–91.

    Article  CAS  PubMed  Google Scholar 

  91. Yu J, et al. Digital next-generation sequencing identifies low-abundance mutations in pancreatic juice samples collected from the duodenum of patients with pancreatic cancer and intraductal papillary mucinous neoplasms. Gut. 2016.

    Google Scholar 

  92. Pugliese V, et al. Pancreatic intraductal sampling during ERCP in patients with chronic pancreatitis and pancreatic cancer: cytologic studies and k-ras-2 codon 12 molecular analysis in 47 cases. Gastrointest Endosc. 2001;104(5):2830–6.

    Google Scholar 

  93. Yamaguchi T, et al. Pancreatic juice cytology in the diagnosis of intraductal papillary mucinous neoplasm of the pancreas: significance of sampling by peroral pancreatoscopy. Cancer. 2005;104(12):2830–6.

    Article  PubMed  Google Scholar 

  94. Li D, et al. Pancreatic cancer. Lancet. 2004;363(9414):1049–57.

    Article  CAS  PubMed  Google Scholar 

  95. Almoguera C, et al. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell. 1988;53(4):549–54.

    Article  CAS  PubMed  Google Scholar 

  96. Kawesha A, et al. K-ras oncogene subtype mutations are associated with survival but not expression of p53, p16(INK4A), p21(WAF-1), cyclin D1, erbB-2 and erbB-3 in resected pancreatic ductal adenocarcinoma. Int J Cancer. 2000;89(6):469–74.

    Article  CAS  PubMed  Google Scholar 

  97. Sho S, et al. Digital PCR improves mutation analysis in pancreas fine needle aspiration biopsy specimens. PLoS One. 2017;12(1):e0170897.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Maire F, et al. Differential diagnosis between chronic pancreatitis and pancreatic cancer: value of the detection of KRAS2 mutations in circulating DNA. Br J Cancer. 2002;87(5):551–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Trumper L, et al. Low sensitivity of the ki-ras polymerase chain reaction for diagnosing pancreatic cancer from pancreatic juice and bile: a multicenter prospective trial. J Clin Oncol. 2002;20(21):4331–7.

    Article  PubMed  Google Scholar 

  100. Wilentz RE, et al. K-ras mutations in the duodenal fluid of patients with pancreatic carcinoma. Cancer. 1998;82:96–103.

    Article  CAS  PubMed  Google Scholar 

  101. Van Laethem JL, et al. Detection of c-Ki-ras gene codon 12 mutations from pancreatic duct brushings in the diagnosis of pancreatic tumours. Gut. 1995;36:781–7.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lu X, et al. Detecting K-ras and p53 gene mutation from stool and pancreatic juice for diagnosis of early pancreatic cancer. Chin Med J. 2002;115(11):1632–6.

    CAS  PubMed  Google Scholar 

  103. Haug U, et al. Mutant-enriched PCR and allele-specific hybridization reaction to detect K-ras mutations in stool DNA: high prevalence in a large sample of older adults. Clin Chem. 2007;53(4):787–90.

    Article  CAS  PubMed  Google Scholar 

  104. Costentin L, et al. Frequent deletions of tumor suppressor genes in pure pancreatic juice from patients with tumoral or nontumoral pancreatic diseases. Pancreatology. 2002;2(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  105. Hodgson DR, et al. ARMS allele-specific amplification-based detection of mutant p53 DNA and mRNA in tumors of the breast. Clin Chem. 2001;47(4):774–8.

    CAS  PubMed  Google Scholar 

  106. Kahlert C, et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289(7):3869–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gansauge S, et al. Genetic alterations in chronic pancreatitis: evidence for early occurrence of p53 but not K-ras mutations. Br J Surg. 1998;85:337–40.

    Article  CAS  PubMed  Google Scholar 

  108. Kanda M, et al. Mutant TP53 in duodenal samples of pancreatic juice from patients with pancreatic cancer or high-grade dysplasia. Clin Gastroenterol Hepatol. 2013;11(6):719–30. e5

    Article  CAS  PubMed  Google Scholar 

  109. Dauksa A, et al. Whole blood DNA aberrant methylation in pancreatic adenocarcinoma shows association with the course of the disease: a pilot study. PLoS One. 2012;7(5):e37509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kisiel JB, et al. New DNA methylation markers for pancreatic cancer: discovery, tissue validation, and pilot testing in pancreatic juice. Clin Cancer Res. 2015;21(19):4473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang Y, et al. Detection of p53 gene mutations in the supernatant of pancreatic juice and plasma from patients with pancreatic carcinomas. Pancreas. 2004;28(1):13–9.

    Article  PubMed  Google Scholar 

  112. Yamaguchi Y, et al. Detection of mutations of p53 tumor suppressor gene in pancreatic juice and its application to diagnosis of patients with pancreatic cancer: comparison with K-ras mutation. Clin Cancer Res. 1999;5:1147–53.

    CAS  PubMed  Google Scholar 

  113. Breitkopf CR, et al. Factors influencing receptivity to future screening options for pancreatic cancer in those with and without pancreatic cancer family history. Hered Cancer Clin Pract. 2012;10(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Canto MI, et al. Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol. 2006;4(6):766–81. quiz 665

    Article  PubMed  Google Scholar 

  115. Carlson C, Greenhalf W, Brentnall TA. Screening of hereditary pancreatic cancer families. In: Beger H-G, et al., editors. The pancreas: an integrated textbook of basic science, medicine and surgery. Malden: Blackwell; 2008.

    Google Scholar 

  116. Langer P, et al. Five years of prospective screening of high-risk individuals from families with familial pancreatic cancer. Gut. 2009;58(10):1410–8.

    Article  CAS  PubMed  Google Scholar 

  117. Schneider R, et al. German national case collection for familial pancreatic cancer (FaPaCa): ten years experience. Familial Cancer. 2011;10(2):323–30.

    Article  PubMed  Google Scholar 

  118. Mocci E, et al. PanGen-Fam: Spanish registry of hereditary pancreatic cancer. Eur J Cancer. 2015;51(14):1911–7.

    Article  CAS  PubMed  Google Scholar 

  119. Joergensen M.T, et al. Is screening for pancreatic cancer in high-risk groups cost-effective? – experience from a Danish national screening program. Pancreatology. 2016.

    Google Scholar 

  120. Vasen HF, et al. Magnetic resonance imaging surveillance detects early-stage pancreatic cancer in carriers of a p16-Leiden mutation. Gastroenterology. 2011;140(3):850–6.

    Article  CAS  PubMed  Google Scholar 

  121. Brentnall TA, et al. Early diagnosis and treatment of pancreatic dysplasia in patients with a family history of pancreatic cancer. Ann Intern Med. 1999;131(4):247–55.

    Article  CAS  PubMed  Google Scholar 

  122. Kimmey MB, et al. Screening and surveillance for hereditary pancreatic cancer. Gastrointest Endosc. 2002;56(4 Suppl):S82–6.

    Article  PubMed  Google Scholar 

  123. Poley JW, et al. The yield of first-time endoscopic ultrasonography in screening individuals at a high risk of developing pancreatic cancer. Am J Gastroenterol. 2009;104(9):2175–81.

    Article  CAS  PubMed  Google Scholar 

  124. Verna EC, et al. Pancreatic cancer screening in a prospective cohort of high-risk patients: a comprehensive strategy of imaging and genetics. Clin Cancer Res. 2010;16(20):5028–37.

    Article  PubMed  Google Scholar 

  125. Ludwig E, et al. Feasibility and yield of screening in relatives from familial pancreatic cancer families. Am J Gastroenterol. 2011;106(5):946–54.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Zubarik R, et al. Screening for pancreatic cancer in a high-risk population with serum CA 19-9 and targeted EUS: a feasibility study. Gastrointest Endosc. 2011;74(1):87–95.

    Article  PubMed  Google Scholar 

  127. Al-Sukhni W, et al. Screening for pancreatic cancer in a high-risk cohort: an eight-year experience. J Gastrointest Surg. 2012;16(4):771–83.

    Article  PubMed  Google Scholar 

  128. Potjer TP, et al. Variation in precursor lesions of pancreatic cancer among high-risk groups. Clin Cancer Res. 2013;19(2):442–9.

    Article  PubMed  Google Scholar 

  129. Sud A, et al. Promising outcomes of screening for pancreatic cancer by genetic testing and endoscopic ultrasound. Pancreas. 2014;43(3):458–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Greenhalf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Sheel, A., Nicholson, J., Sarantitis, I., Neoptolemos, J., Greenhalf, W. (2017). Secondary Screening for Inherited Pancreatic Ductal Adenocarcinoma. In: Neoptolemos, J., Urrutia, R., Abbruzzese, J., Büchler, M. (eds) Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6631-8_63-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6631-8_63-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6631-8

  • Online ISBN: 978-1-4939-6631-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics