Skip to main content

De Novo Discovery of Bioactive Cyclic Peptides Using Bacterial Display and Flow Cytometry

  • Protocol
  • First Online:
Peptide Libraries

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1248))

Abstract

Cyclic peptides are increasingly desired for their enhanced stability and pharmacologic properties. Due to their limited conformational flexibility, cyclic peptides with C-to-N-terminal peptide bond and a disulfide bridge can confer high target binding affinity and resistance to proteolytic enzymes. Challenging drug targets including protein interaction surfaces can be successfully targeted using peptides rather than small molecules or proteins. Peptides, capable of antibody-like affinities with increased potency, can be designed to fill in the gap between small molecules and larger proteins. However, cysteine-rich peptides with several disulfide bonds have limitations in production and purification. Therefore, we devised a strategy to identify cyclic peptides with single disulfide connectivity that offers desired properties along with ease in synthesis and production. Here, de novo design of cyclic peptides is demonstrated through screening of peptide libraries using bacterial display and cell sorting. Herein, a step-by-step protocol is presented to design and screen diverse peptide libraries to identify cyclic peptides with desired specificity and affinity towards arbitrary target proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Robinson JA, Demarco S, Gombert F et al (2008) The design, structures and therapeutic potential of protein epitope mimetics. Drug Discov Today 13(21–22):944–951

    Article  CAS  PubMed  Google Scholar 

  2. White TR, Renzelman CM, Rand AC et al (2011) On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds. Nat Chem Biol 7(11):810–817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Werle M, Kafedjiiski K, Kolmar H et al (2007) Evaluation and improvement of the properties of the novel cystine-knot microprotein McoEeTI for oral administration. Int J Pharm 332(1–2):72–79

    Article  CAS  PubMed  Google Scholar 

  4. Wong CT, Rowlands DK, Wong CH et al (2012) Orally active peptidic bradykinin B1 receptor antagonists engineered from a cyclotide scaffold for inflammatory pain treatment. Angew Chem Int Ed Engl 51(23):5620–5624

    Article  CAS  PubMed  Google Scholar 

  5. Beck JG, Chatterjee J, Laufer B et al (2012) Intestinal permeability of cyclic peptides: common key backbone motifs identified. J Am Chem Soc 134(29):12125–12133

    Article  CAS  PubMed  Google Scholar 

  6. Bock JE, Gavenonis J, Kritzer JA (2013) Getting in shape: controlling peptide bioactivity and bioavailability using conformational constraints. ACS Chem Biol 8(3):488–499

    Article  CAS  PubMed  Google Scholar 

  7. Martin SF, Clements JH (2013) Correlating structure and energetics in protein-ligand interactions: paradigms and paradoxes. Annu Rev Biochem 82:267–293

    Article  CAS  PubMed  Google Scholar 

  8. Avrutina O, Schmoldt HU, Gabrijelcic-Geiger D et al (2005) Trypsin inhibition by macrocyclic and open-chain variants of the squash inhibitor MCoTI-II. Biol Chem 386(12):1301–1306

    Article  CAS  PubMed  Google Scholar 

  9. Quimbar P, Malik U, Sommerhoff CP et al (2013) High-affinity cyclic peptide matriptase inhibitors. J Biol Chem 288(19):13885–13896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Fittler H, Avrutina O, Glotzbach B et al (2013) Combinatorial tuning of peptidic drug candidates: high-affinity matriptase inhibitors through incremental structure-guided optimization. Org Biomol Chem 11(11):1848–1857

    Article  CAS  PubMed  Google Scholar 

  11. de Veer SJ, Ukolova SS, Munro CA et al (2013) Mechanism-based selection of a potent kallikrein-related peptidase 7 inhibitor from a versatile library based on the sunflower trypsin inhibitor SFTI-1. Biopolymers 100(5):510–518

    Google Scholar 

  12. Moore SJ, Hayden Gephart MG, Bergen JM et al (2013) Engineered knottin peptide enables noninvasive optical imaging of intracranial medulloblastoma. Proc Natl Acad Sci U S A 110(36):14598–14603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Getz JA, Cheneval O, Craik DJ et al (2013) Design of a cyclotide antagonist of neuropilin-1 and -2 that potently inhibits endothelial cell migration. ACS Chem Biol 8(6):1147–1154

    Article  CAS  PubMed  Google Scholar 

  14. Rice JJ, Schohn A, Bessette PH et al (2006) Bacterial display using circularly permuted outer membrane protein OmpX yields high affinity peptide ligands. Protein Sci 15(4):825–836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Rice JJ, Daugherty PS (2008) Directed evolution of a biterminal bacterial display scaffold enhances the display of diverse peptides. Protein Eng Des Sel 21(7):435–442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Getz JA, Schoep TD, Daugherty PS (2012) Peptide discovery using bacterial display and flow cytometry. Methods Enzymol 503:75–97

    Article  CAS  PubMed  Google Scholar 

  17. Kenrick S, Rice J, Daugherty P (2007) Flow cytometric sorting of bacterial surface-displayed libraries. Curr Protoc Cytom Chapter 4:Unit4 6

    Google Scholar 

  18. Boder ET, Wittrup KD (1998) Optimal screening of surface-displayed polypeptide libraries. Biotechnol Prog 14(1):55–62

    Article  CAS  PubMed  Google Scholar 

  19. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  20. Pierce BG, Hourai Y, Weng Z (2011) Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS One 6(9):e24657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1–3):43–56

    Article  CAS  Google Scholar 

  22. Daura X, Gademann K, Jaun B et al (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Ed Engl 38(1–2):236–240

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick S. Daugherty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shivange, A.V., Daugherty, P.S. (2015). De Novo Discovery of Bioactive Cyclic Peptides Using Bacterial Display and Flow Cytometry. In: Derda, R. (eds) Peptide Libraries. Methods in Molecular Biology, vol 1248. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2020-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2020-4_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2019-8

  • Online ISBN: 978-1-4939-2020-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics