Skip to main content

An Automatic Segmentation Method Combining an Active Contour Model and a Classification Technique for Detecting Polycomb-group Proteinsin High-Throughput Microscopy Images

  • Protocol
  • First Online:
Polycomb Group Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1480))

Abstract

The large amount of data generated in biological experiments that rely on advanced microscopy can be handled only with automated image analysis. Most analyses require a reliable cell image segmentation eventually capable of detecting subcellular structures.

We present an automatic segmentation method to detect Polycomb group (PcG) proteins areas isolated from nuclei regions in high-resolution fluorescent cell image stacks. It combines two segmentation algorithms that use an active contour model and a classification technique serving as a tool to better understand the subcellular three-dimensional distribution of PcG proteins in live cell image sequences. We obtained accurate results throughout several cell image datasets, coming from different cell types and corresponding to different fluorescent labels, without requiring elaborate adjustments to each dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The inner loop is an iterative algorithm solving the scheme in (Fig. 2).

References

  1. Walter T, Held M, Neumann B, Hériché JK, Conrad C, Pepperkok R, Ellenberg J (2010) Automatic identification and clustering of chromosome phenotypes in a genome wide RNAi screen by time-lapse imaging. J Struct Biol 170:1–9

    Article  CAS  PubMed  Google Scholar 

  2. Handfield L, Chong YT, Simmons J, Andrews BJ, Moses AM (2013) Unsupervised clustering of subcellular protein expression patterns in high-throughput microscopy images reveals protein complexes and functional relationships between proteins. PLoS Comput Biol 9(6):e1003085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shamir L, Delaney JD, Orlov N, Eckley DM, Goldberg IG (2010) Pattern recognition software and techniques for biological image analysis. PLoS Comput Biol 6(11):e1000974

    Article  PubMed  PubMed Central  Google Scholar 

  4. Huang K, Murphy RF (2004) Boosting accuracy of automated classification of fluorescence microscope images for location proteomics. BMC Bioinformatics 5:78–97

    Article  PubMed  PubMed Central  Google Scholar 

  5. Eliceiri KW, Berthold MR, Goldberg IG, Ibanez L, Manjunath BS, Martone ME, Murphy RF, Peng H, Plant AL, Roysam B, Stuurman N, Swedlow JR, Tomancak P, Carpenter A (2012) Biological imaging software tools. Nat Methods 9(7): 697–710.

    Google Scholar 

  6. Zhou X, Wong STC (2006) Informatics challenges of high-throughput microscopy. IEEE Signal Process Mag 23(3):63–72

    Article  Google Scholar 

  7. Dzyubachyk O, van Cappellen WA, Essers J, Niessen WJ, Meijering E (2010) Advanced level-set-based cell tracking in time-lapse fluorescence microscopy. IEEE Trans Med Imaging 29(3):852–867

    Article  PubMed  Google Scholar 

  8. Haralick RM, Shapiro LG (1985) Image segmentation survey. CVGIP 29:100–132

    Google Scholar 

  9. Aubert G, Kornprobst P (2006) Mathematical problems in image processing. partial differential equations and calculus of variations, 2nd edn. Springer, New York

    Google Scholar 

  10. Mumford D, Shah J (1989) Optimal approximation by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42:577–685

    Article  Google Scholar 

  11. Chan T, Vese L (2001) Active contours without edges. IEEE Trans Image Process 10:266–277

    Article  CAS  PubMed  Google Scholar 

  12. Zucher S (1976) Region growing: childhood and adolescence. Comput Graphics Image Process 5:382–399

    Article  Google Scholar 

  13. Sahoo PK, Soltani S, Wong KC, Chen YC (1988) A survey of thresholding techniques. Comput Vis Graphics Image Process 41:233–260

    Article  Google Scholar 

  14. Blake A, Isard M (1998) Active contours. Springer, New York

    Book  Google Scholar 

  15. Sapiro G (2001) Geometric partial differential equations and image analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Osher S, Fedkiw RP (2000) Level set methods. Technical Report 00–08, UCLA CAM Report

    Google Scholar 

  17. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  Google Scholar 

  18. Portoso M, Cavalli G (2008) The role of RNAi and noncoding RNAs in polycomb mediated control of gene expression and genomic programming. In: Morris KV (ed) RNA and the regulation of gene expression: a hidden layer of complexity. Caister Academic, Poole, UK, pp 29–44

    Google Scholar 

  19. Cesarini E, Mozzetta C, Marullo F, Gregoretti F, Gargiulo A, Columbaro M, Cortesi A, Antonelli L, Di Pelino S, Squarzoni S, Palacios D, Zippo A, Bodega B, Oliva G, Lanzuolo C (2015) Lamin A/C sustain PcG proteins architecture maintaining transcriptional repression at target genes. J Cell Biol 211(3):533–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang X, Huang D, Xu H (2010) An efficient local Chan-Vese model for image segmentation. Pattern Recogn 43:603–618

    Article  Google Scholar 

  21. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49

    Article  Google Scholar 

  22. El-Zaart A (2010) Images thresholding using ISODATA technique with Gamma Distribution. Pattern Recogn Image Anal 20(1):29–41

    Article  Google Scholar 

  23. Ball GH, Hall DJ (1965) A novel method of data analysis and pattern classification. Technical report, Stanford Research Institute, Menlo Park, CA

    Google Scholar 

  24. Gonzalez R, Woods R (2006) Digital image processing, 3rd edn. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  25. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  26. ImageJ – Home page. http://imagej.nih.gov/ij/

  27. 3DObjects Counter. http://fiji.sc/3D_Objects_Counter

  28. LibTIFF – TIFF library and utilities. http://www.remotesensing.org/libtiff/

Download references

Acknowledgments

Work partially supported by FIRB 2010 Project n.~RBFR106S1Z002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Antonelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gregoretti, F., Cesarini, E., Lanzuolo, C., Oliva, G., Antonelli, L. (2016). An Automatic Segmentation Method Combining an Active Contour Model and a Classification Technique for Detecting Polycomb-group Proteinsin High-Throughput Microscopy Images. In: Lanzuolo, C., Bodega, B. (eds) Polycomb Group Proteins. Methods in Molecular Biology, vol 1480. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6380-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6380-5_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6378-2

  • Online ISBN: 978-1-4939-6380-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics