Skip to main content

The Primary Cilium as a Strain Amplifying Microdomain for Mechanotransduction at the Cell Membrane

  • Chapter
  • First Online:
Molecular and Cellular Mechanobiology

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

The primary cilium is an extracellular organelle that transduces mechanical signals into intracellular signaling cascades. The cilium is accompanied by a dense collection of stretch-activated channels and proteins involved in mechanotransduction, which form a highly sensitive microdomain at the cell surface that serves to amplify detected stimuli. The putative stress buildup at the base of the cilium activates components in this microdomain to trigger signaling via second messengers such as calcium and cyclic AMP. Defects in the structure of the cilium and mutations in ciliary proteins disrupt the cilium’s ability to detect and transduce mechanical stimuli. This dysfunction at the cellular and molecular level translates to the organ and tissue level, resulting in disastrous diseases and syndromes spanning multiple organs. This chapter discusses the mechanisms for primary cilium-mediated mechanotransduction, the use of computational models to characterize cilium mechanics, modifications in cilium structure and composition to tune mechanosensitivity, and animal models created to explore cilium-based health complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen OS, Nielsen C, Maer AM, Lundb’k JA, Goulian M, Koeppe RE (1999) Ion channels as tools to monitor lipid bilayer-membrane protein interactions: gramicidin channels as molecular force transducers. Methods Enzymol 294:208–224

    Article  CAS  PubMed  Google Scholar 

  • Anderson CT, Castillo AB, Brugmann SA, Helms JA, Jacobs CR, Stearns T (2008) Primary cilia: cellular sensors for the skeleton. Anat Rec 291(9):1074–1078

    Article  Google Scholar 

  • Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148

    Article  CAS  PubMed  Google Scholar 

  • Besschetnova TY, Kolpakova-Hart E, Guan Y, Zhou J, Olsen BR, Shah JV (2010) Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation. Curr Boil 20(2):182–187

    Article  CAS  Google Scholar 

  • Boyle MB, Kaczmarek LK (2012) Steroidal regulation of mRNA coding for potassium channels. In: Grinnell AD, Armstrong D, Jackson MB (eds) Calcium and ion channel modulation. Springer Science & Business Media, New York, pp 359–370

    Google Scholar 

  • Calvet JP, Grantham JJ (2001) The genetics and physiology of polycystic kidney disease. Semin Nephrol 21(2):107–123

    Article  CAS  PubMed  Google Scholar 

  • Charras GT, Horton MA (2002) Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys J 82:2970–2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charras GT, Williams BA, Sims SM, Horton MA (2004) Estimating the sensitivity of mechanosensitive Ion channels to membrane strain and tension. Biophys J 87(4):2870–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JC, Hoey D, Chua M, Bellon R, Jacobs CR (2014) Deletion of primary cilia in bone marrow cells attenuates mechanically induced bone formation. Poster session presented at the meeting of the Orthopaedic Research Society, New Orleans, LA

    Google Scholar 

  • Delaine-Smith RM, Sittichokechaiwut A, Reilly GC (2014) Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts. FASEB J 28(1):430–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delling M, DeCaen PG, Doerner JF, Febvay S, Clapham DE (2013) Primary cilia are specialized calcium signalling organelles. Nature 504(7479):311–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delmas P, Nauli SM, Li X, Coste B, Osorio N, Crest M, Brown DA, Zhou J (2004) Gating of the polycystin ion channel signaling complex in neurons and kidney cells. FASEB J 18(6):740–742

    CAS  PubMed  Google Scholar 

  • Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Min Res 28(1):2–17

    Article  Google Scholar 

  • Devlin MJ, Lieberman DE (2007) Variation in estradiol level affects cortical bone growth in response to mechanical loading in sheep. J Exp Biol 210(Pt 4):602–613

    Article  CAS  PubMed  Google Scholar 

  • Downs ME, Nguyen AM, Herzog FA, Hoey DA, Jacobs CR (2014) An experimental and computational analysis of primary cilia deflection under fluid flow. Comput Methods Biomech Biomed Engin 17(1):2–10

    Article  PubMed  Google Scholar 

  • Dyer CA, Benjamins JA (1990) Glycolipids and transmembrane signaling: antibodies to galactocerebroside cause an influx of calcium in oligodendrocytes. J Cell Biol 111(2):625–633

    Article  CAS  PubMed  Google Scholar 

  • Emmer BT, Maric D, Engman DM (2010) Molecular mechanisms of protein and lipid targeting to ciliary membranes. J Cell Sci 123(Pt 4):529–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espinha LC, Hoey DA, Fernandes PR, Rodrigues HC, Jacobs CR (2014) Oscillatory fluid flow influences primary cilia and microtubule mechanics. Cytoskeleton 71(7):435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felgner H, Frank R, Biernat J, Mandelkow EM, Mandelkow E, Ludin B, Matus A, Schliwa M (1997) Domains of neuronal microtubule-associated proteins and flexural rigidity of microtubules. J Cell Biol 138(5):1067–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galea GL, Price JS, Lanyon LE (2013) Estrogen receptors’ roles in the control of mechanically adaptive bone (re)modeling. Bonekey Rep 2:413

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Gonzalo FR, Corbit KC, Sirerol-Piquer MS, Ramaswami G, Otto EA, Noriega TR, Seol AD, Robinson JF, Bennett CL, Josifova DJ, García-Verdugo JM, Katsanis N, Hildebrandt F, Reiter JF (2011) A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat Gen 43(8):776–784

    Article  CAS  Google Scholar 

  • Geiger RC, Kaufman CD, Lam AP, Budinger GR, Dean DA (2009) Tubulin acetylation and histone deacetylase 6 activity in the lung under cyclic load. Am J Respir Cell Mol Biol 40(1):76–82

    Article  CAS  PubMed  Google Scholar 

  • Geng L, Okuhara D, Yu Z, Tian X, Cai Y, Shibazaki S, Somlo S (2006) Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J Cell Sci 119(Pt 7):1383–1395

    Article  CAS  PubMed  Google Scholar 

  • Giusto NM, Pasquaré SJ, Salvador GA, Ilincheta de Boschero MG (2010) Lipid second messengers and related enzymes in vertebrate rod outer segments. J Lipid Res 51(4):685–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto H, Inoko A, Inagaki M (2013) Cell cycle progression by the repression of primary cilia formation in proliferating cells. Cell Mol Life Sci 70(20):3893–3905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goulian M, Mesquita ON, Fygenson DK, Nielsen C, Andersen OS, Libchaber A (1998) Gramicidin channel kinetics under tension. Biophys J 74:328–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gradilone SA, Masyuk AI, Splinter PL, Banales JM, Huang BQ, Tietz PS, Masyuk TV, Larusso NF (2007) Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci U S A 104(48):19138–19143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall B, Limaye A, Kulkarni AB (2009) Overview: generation of gene knockout mice. Curr Protoc Cell Biol 44:19.12:19.12.1–19.12.17

    Google Scholar 

  • Hao L, Scholey JM (2009) Intraflagellar transport at a glance. J Cell Sci 122(Pt 7):889–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haycraft CJ, Zhang Q, Song B, Jackson WS, Detloff PJ, Serra R, Yoder BK (2007) Intraflagellar transport is essential for endochondral bone formation. Development 134(2):307–316

    Article  CAS  PubMed  Google Scholar 

  • Hierck BP, Van der Heiden K, Alkemade FE, Van de Pas S, Van Thienen JV, Groenendijk BC, Bax WH, Van der Laarse A, Deruiter MC, Horrevoets AJ, Poelmann RE (2008) Primary cilia sensitize endothelial cells for fluid shear stress. Dev Dyn 237(3):725–735

    Article  CAS  PubMed  Google Scholar 

  • Hsiao Y-C, Tong ZJ, Westfall JE, Ault JG, Page-McCaw PS, Ferland RJ (2009) Ahi1, whose human ortholog is mutated in Joubert syndrome, is required for Rab8a localization, ciliogenesis and vesicle trafficking. Hum Mol Gen 18(20):3926–3941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao Y-C, Tuz K, Ferland RJ (2012) Trafficking in and to the primary cilium. Cilia 1:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Nakata H, Gu C, De Beer T, Cooper DM (2002) A critical interplay between Ca2+ inhibition and activation by Mg2+ of AC5 revealed by mutants and chimeric constructs. J Biol Chem 277(36):33139–33147

    Article  CAS  PubMed  Google Scholar 

  • Hunnicutt GR, Kosfiszer MG, Snell WJ (1990) Cell body and flagellar agglutinins in Chlamydomonas reinhardtii: the cell body plasma membrane is a reservoir for agglutinins whose migration to the flagella is regulated by a functional barrier. J Cell Biol 111(4):1605–1616

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell's antenna. Nat Rev Mol Cell Bio 12:222–234

    Article  CAS  Google Scholar 

  • Jin X, Mohieldin AM, Muntean BS, Green JA, Shah JV, Mykytyn K, Nauli SM (2014) Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli. Cell Mol Life Sci 71(11):2165–2178

    Article  CAS  PubMed  Google Scholar 

  • Johnson ET, Nicola T, Roarty K, Yoder BK, Haycraft CJ, Serra R (2008) Role for primary cilia in the regulation of mouse ovarian function. Dev Dyn 237:2053–2060

    Article  CAS  PubMed  Google Scholar 

  • Kawanami A, Matsushita T, Chan YY, Murakami S (2009) Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochem Biophys Res Comm 386(3):477–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirber MT, Guerrero-Hernandez A, Bowman DS, Fogarty KE, Tuft RA, Singer JJ, Fay FS (2000) Multiple pathways responsible for the stretch-induced increase in Ca2+ concentration in toad stomach smooth muscle cells. J Physiol 524:3–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein-Nulend J, van Oers RFM, Bakker AD, Bacabac RG (2015) Bone cell mechanosensitivity, estrogen deficiency, and osteoporosis. J Biomech 48(5):855–865

    Google Scholar 

  • Kwon RY, Temiyasathit S, Tummala P, Quah CC, Jacobs CR (2010) Primary cilium-dependent mechanosensing is mediated by adenylyl cyclase 6 and cyclic AMP in bone cells. FASEB J 24(8):2859–2868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KL, Hoey DA, Spasic M, Tang T, Hammond HK, Jacobs CR (2014) Adenylyl cyclase 6 mediates loading-induced bone adaptation in vivo. FASEB J 28(3):1157–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KL, Guevarra MD, Nguyen AM, Chua MC, Wang Y, Jacobs CR (2015) The primary cilium functions as a mechanical and calcium signaling nexus. Cilia 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Lefebvre PA, Asleson CM, Tam LW (1995) Control of flagellar length in Chlamydomonas. Semin Dev Biol 6:317–323

    Article  CAS  Google Scholar 

  • Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM (2003) Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol 285(5):F998–F1012

    Article  CAS  PubMed  Google Scholar 

  • Lundbaek JA, Andersen OS (1999) Spring constants for channel-induced lipid bilayer deformations. Estimates using gramicidin channels. Biophys J 76:889–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malone AMD, Anderson CT, Tummala P (2007) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. PNAS 104(33):13325–13330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann KA, Oest ME, Bakker A, Fahlgren A (2015) Bone cells with primary cilia exhibit high localized strains near the cilium base when subjected to dynamic fluid flow. Poster session presented at the annual meeting of the Orthopaedic Research Society, Las Vegas, NV

    Google Scholar 

  • Markin VS, Martinac B (1991) Mechanosensitive ion channels as reporters of bilayer expression. A theoretical model. Biophys J 60:1120–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markin VS, Sachs F (2004) Thermodynamics of mechanosensitivity. Phys Biol 1:110–124

    Article  CAS  PubMed  Google Scholar 

  • Marshall WF (2008) Basal bodies platforms for building cilia. Curr Top Dev Biol 85:1–22

    Article  CAS  PubMed  Google Scholar 

  • Marshall WF, Rosenbaum JL (2001) Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J Cell Biol 155:405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall WF, Qin H, Rodrigo Brenni M, Rosenbaum JL (2005) Flagellar length control system: testing a simple model based on intraflagellar transport and turnover. Mol Biol Cell 16(1):270–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF (2006) Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 131(3):911–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathieu PS, Bodle JC, Loboa EG (2014) Primary cilium mechanotransduction of tensile strain in 3D culture: finite element analyses of strain amplification caused by tensile strain applied to a primary cilium embedded in a collagen matrix. J Biomech 47(9):2211–2217

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore ER, Chen JC, Jacobs CR (2014) Disruption of periosteal osteochondroprogenitor primary cilia stunts postnatal bone growth. Poster session presented at the meeting of the American Society for Cell Biology, Philadelphia, PA

    Google Scholar 

  • Moore ER, Chen JC, Jacobs CR (2015) Periosteal primary cilia are necessary for postnatal longitudinal growth in the appendicular skeleton. Poster session presented at the meeting of the Orthopaedic Research Society, Las Vegas, NV

    Google Scholar 

  • Mou TC, Masada N, Cooper DM, Sprang SR (2009) Structural basis for inhibition of mammalian adenylyl cyclase by calcium. Biochemistry 48(15):3387–3397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyer JH, Lee-Tischler MJ, Kwon HY, Schrick JJ, Avner ED, Sweeney WE, Godfrey VL, Cacheiro NL, Wilkinson JE, Woychik RP (1994) Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science 264(5163):1329–1333

    Article  CAS  PubMed  Google Scholar 

  • Murcia NS, Richards WG, Yoder BK, Mucenski ML, Dunlap JR, Woychik RP (2000) The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination. Development 127(11):2347–2355

    CAS  PubMed  Google Scholar 

  • Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peränen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK (2007) A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129(6):1201–1213

    Article  CAS  PubMed  Google Scholar 

  • Nachury MV, Seeley ES, Jin H (2010) Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu Rev Cell Dev Biol 26:59–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33(2):129–137

    Article  CAS  PubMed  Google Scholar 

  • Nguyen AM, Jacobs CR (2014a) Deletion of primary cilia Ift88 gene from osteocytes reduces loading-induced bone formation. Poster session presented at the meeting of the Orthopaedic Research Society, New Orleans, LA

    Google Scholar 

  • Nguyen AM, Jacobs CR (2014b) Tuning cellular mechanosensitivity: mechanical and chemical modulation of primary cilia bending. Poster session presented at the meeting of the American Society for Cell Biology, Philadelphia, PA

    Google Scholar 

  • O'Brien ET, Salmon ED, Erickson HP (1997) How calcium causes microtubule depolymerization. Cell Motil Cytoskeleton 36(2):125–135

    Article  PubMed  Google Scholar 

  • Ohanian J, Ohanian V (2001) Sphingolipids in mammalian cell signalling. Cell Mol Life Sci 58(14):2053–2068

    Article  CAS  PubMed  Google Scholar 

  • Ou Y, Ruan Y, Cheng M, Moser JJ, Rattner JB, van der Hoorn FA (2009) Adenylate cyclase regulates elongation of mammalian primary cilia. Exper Cell Res 315(16):2802–2817

    Article  CAS  Google Scholar 

  • Pan J, Snell WJ (2005) Chlamydomonas shortens its flagella by activating axonemal disassembly, stimulating IFT particle trafficking, and blocking anterograde cargo loading. Dev Cell 9(3):431–438

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Snell WJ (2014) Organelle size: a cilium length signal regulates IFT cargo loading. Curr Biol 24(2):R75–R78

    Article  CAS  PubMed  Google Scholar 

  • Pathak N, Obara T, Mangos S, Liu Y, Drummond IA (2007) The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation. Mol Biol Cell 18:4353–4364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pazour GJ, Bloodgood RA (2008) Targeting proteins to the ciliary membrane. Curr Top Dev Biol 85:115–149

    Article  CAS  PubMed  Google Scholar 

  • Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151(3):709–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB (2002) Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 12(11):R378–R380

    Article  CAS  PubMed  Google Scholar 

  • Plotnikova OV, Pugacheva EN, Golemis EA (2009) Primary cilia and the cell cycle. Methods Cell Bio 94:137–160

    Article  CAS  Google Scholar 

  • Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184(1):71–79

    Article  CAS  PubMed  Google Scholar 

  • Praetorius HA, Spring KR (2003) Removal of the MDCK cell primary cilium abolishes flow sensing. J Membr Biol 191(1):69–76

    Article  CAS  PubMed  Google Scholar 

  • Rambo CO, Szego CM (1983) Estrogen action at endometrial membranes: alterations in luminal surface detectable within seconds. J Cell Biol 97(3):679–685

    Article  CAS  PubMed  Google Scholar 

  • Rydholm S, Zwartz G, Kowalewski JM, Kamali-Zare P, Frisk T, Brismar H (2010) Mechanical properties of primary cilia regulate the response to fluid flow. Am J Physiol Renal Physiol 298(5):F1096–F1102

    Article  CAS  PubMed  Google Scholar 

  • Sachs F (2010) Stretch-activated ion channels: what are they? Physiology 25(1):50–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachs F, Morris CE (1998) Mechanosensitive ion channels in nonspecialized cells. Rev Physiol Biochem Pharmacol 132:1–77

    CAS  PubMed  Google Scholar 

  • Satir P, Pedersen LB, Christensen ST (2010) The primary cilium at a glance. J Cell Sci 123(Pt 4):499–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrøder JM, Schneider L, Christensen ST, Pedersen LB (2007) EB1 is required for primary cilia assembly in fibroblasts. Curr Biol 17(13):1134–1139

    Article  PubMed  Google Scholar 

  • Schrøder JM, Larsen J, Komarova Y, Akhmanova A, Thorsteinsson RI, Grigoriev I, Manguso R, Christensen ST, Pedersen SF, Geimer S, Pedersen LB (2011) EB1 and EB3 promote cilia biogenesis by several centrosome-related mechanisms. J Cell Sci 124(Pt 15):2539–2551

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz EA, Leonard ML, Bizios R, Bowser SS (1997) Analysis and modeling of the primary cilium bending response to fluid shear. Am J Physiol 272(1 Pt 2):F132–F138

    CAS  PubMed  Google Scholar 

  • Song L, Dentler WL (2001) Flagellar protein dynamics in Chlamydomonas. J Biol Chem 276:29754–29763

    Article  CAS  PubMed  Google Scholar 

  • Soppina V, Herbstman JF, Skiniotis G, Verhey KJ (2012) Luminal localization of α-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules. PLoS One 7(10), e48204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spasic M, Jacobs CR (2014) Modulating primary cilia length restores osteocyte mechanosensing. Poster session presented at the meeting of the American Society for Cell Biology, Philadelphia, PA

    Google Scholar 

  • Stayner C, Zhou J (2001) Polycystin channels and kidney disease. Trends Pharmacol Sci 22(11):543–546

    Article  CAS  PubMed  Google Scholar 

  • Stephens RE (1997) Synthesis and turnover of embryonic sea urchin ciliary proteins during selective inhibition of tubulin synthesis and assembly. Mol Biol Cell 8:2187–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su S, Phua SC, DeRose R, Chiba S, Narita K, Kalugin PN, Katada T, Kontani K, Takeda S, Inoue T (2013) Genetically encoded calcium indicator illuminates calcium dynamics in primary cilia. Nat Methods 10(11):1105–1107

    Article  CAS  PubMed  Google Scholar 

  • Takemura R, Okabe S, Umeyama T, Kanai Y, Cowan NJ, Hirokawa N (1992) Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule-associated proteins MAP1B, MAP2 or tau. J Cell Sci 103(Pt 4):953–964

    CAS  PubMed  Google Scholar 

  • Temiyasathit S, Tang WJ, Leucht P (2012) Mechanosensing by the primary cilium: deletion of Kif3A reduces bone formation due to loading. Leipzig ND, ed. PLoS One 7(3), e33368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thazhath R, Jerka-Dziadosz M, Duan J, Wloga D, Gorovsky MA, Frankel J, Gaertig J (2004) Cell context-specific effects of the β-tubulin glycylation domain on assembly and size of microtubular organelles. Mol Biol Cell 15:4136–4147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turco AE, Padovani EM, Chiaffoni GP, Peissel B, Rossetti S, Marcolongo A, Gammaro L, Maschio G, Pignatti PF (1993) Molecular genetic diagnosis of autosomal dominant polycystic kidney disease in a newborn with bilateral cystic kidneys detected prenatally and multiple skeletal malformations. J Med Genet 30(5):419–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyler KM, Fridberg A, Toriello KM, Olson CL, Cieslak JA, Hazlett TL, Engman DM (2009) Flagellar membrane localization via association with lipid rafts. J Cell Sci 122(Pt 6):859–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira OV, Gaus K, Verkade P, Fullekrug J, Vaz WL, Simons K (2006) FAPP2, cilium formation, and compartmentalization of the apical membrane in polarized Madin-Darby canine kidney (MDCK) cells. Proc Natl Acad Sci 103(49):18556–18561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4(12):938–947

    Article  CAS  PubMed  Google Scholar 

  • Wloga D, Webster DM, Rogowski K, Bré MH, Levilliers N, Jerka-Dziadosz M, Janke C, Dougan ST, Gaertig J (2009) TTLL3 is a tubulin glycine ligase that regulates the assembly of cilia. Dev Cell 16:867–876

    Article  CAS  PubMed  Google Scholar 

  • Wren KN, Craft JM, Tritschler D, Schauer A, Patel DK, Smith EF, Porter ME, Kner P, Lechtreck KF (2013) A differential cargo-loading model of ciliary length regulation by IFT. Curr Biol 23(24):2463–2471

    Article  CAS  PubMed  Google Scholar 

  • Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13(10):2508–2516

    Article  CAS  PubMed  Google Scholar 

  • Young YN, Downs M, Jacobs CR (2012) Dynamics of the primary cilium in shear flow. Biophys J 103(4):629–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou H, Lifshitz LM, Tuft RA, Fogarty KE, Singer JJ (2002) Visualization of Ca2+ entry through single stretch-activated cation channels. Proc Natl Acad Sci 99:6404–6409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Jacobs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Moore, E.R., Jacobs, C.R. (2016). The Primary Cilium as a Strain Amplifying Microdomain for Mechanotransduction at the Cell Membrane. In: Chien, S., Engler, A., Wang, P. (eds) Molecular and Cellular Mechanobiology. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-5617-3_1

Download citation

Publish with us

Policies and ethics