Skip to main content

Morphological Aspects of Tumor Angiogenesis

  • Protocol
  • First Online:
Tumor Angiogenesis Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1464))

Abstract

The tumor vasculature is a chaotic mixture of abnormal, hierarchically disorganized vessels that differ from those of normal tissues with respect to organization, structure and function. Firstly, tumor vessel wall structure is abnormal and heterogeneous within the tumor. Besides contractile wall components, the perivascular compartment is often lacking pericytes, what makes the tumor vessels fragile and leaky. Secondly, another group of abnormalities involves distortions in angioarchitecture and vasculature as network. Common features of tumor vessels, irrespective of their origin, size and growth pattern, are absence of hierarchical organization, formation of vessels with irregular contours and their heterogeneous distribution within the tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. doi:10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kraljevic S, Stambrook PJ, Pavelic K (2004) Accelerating drug discovery. EMBO Rep 5(9):837–842. doi:10.1038/sj.embor.7400236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh M, Ferrara N (2012) Modeling and predicting clinical efficacy for drugs targeting the tumor milieu. Nat Biotechnol 30(7):648–657. doi:10.1038/nbt.2286

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    Article  CAS  PubMed  Google Scholar 

  5. Gaustad JV, Simonsen TG, Leinaas MN, Rofstad EK (2012) Sunitinib treatment does not improve blood supply but induces hypoxia in human melanoma xenografts. BMC Cancer 12:388. doi:10.1186/1471-2407-12-388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257. doi:10.1038/35025220

    Article  CAS  PubMed  Google Scholar 

  7. Warren BA (1979) The vascular morphology of tumors. In: Peterson H-I (ed) Tumor blood circulation: angiogenesis, vascular morphology and blood flow of experimental and human tumors. CRC Press Inc., Boca Raton, FL, pp 1–47

    Google Scholar 

  8. Nagy JA, Chang SH, Shih SC, Dvorak AM, Dvorak HF (2010) Heterogeneity of the tumor vasculature. Semin Thromb Hemost 36(3):321–331. doi:10.1055/s-0030-1253454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hlushchuk R, Riesterer O, Baum O, Wood J, Gruber G, Pruschy M, Djonov V (2008) Tumor recovery by angiogenic switch from sprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584 or ionizing radiation. Am J Pathol 173(4):1173–1185. doi:10.2353/ajpath.2008.071131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dvorak HF (2003) Rous-Whipple Award Lecture. How tumors make bad blood vessels and stroma. Am J Pathol 162(6):1747–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, Trent JM, Meltzer PS, Hendrix MJ (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155(3):739–752. doi:10.1016/S0002-9440(10)65173-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stubbs M, McSheehy PM, Griffiths JR, Bashford CL (2000) Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 6(1):15–19

    Article  CAS  PubMed  Google Scholar 

  13. Kimbrough CW, Khanal A, Zeiderman M, Khanal BR, Burton NC, McMasters KM, Vickers SM, Grizzle WE, McNally LR (2015) Targeting acidity in pancreatic adenocarcinoma: multispectral optoacoustic tomography detects pH-low insertion peptide probes in vivo. Clin Cancer Res 21(20):4576–4585. doi:10.1158/1078-0432.CCR-15-0314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7(8):345–350

    Article  CAS  PubMed  Google Scholar 

  15. Burri PH, Hlushchuk R, Djonov V (2004) Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn 231(3):474–488. doi:10.1002/dvdy.20184

    Article  PubMed  Google Scholar 

  16. van Hinsbergh VW, Koolwijk P (2008) Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res 78(2):203–212. doi:10.1093/cvr/cvm102

    Article  CAS  PubMed  Google Scholar 

  17. Hlushchuk R, Makanya AN, Djonov V (2011) Escape mechanisms after antiangiogenic treatment, or why are the tumors growing again? Int J Dev Biol 55(4–5):563–567. doi:10.1387/ijdb.103231rh

    Article  CAS  PubMed  Google Scholar 

  18. Carmeliet P, De Smet F, Loges S, Mazzone M (2009) Branching morphogenesis and antiangiogenesis candidates: tip cells lead the way. Nat Rev Clin Oncol 6(6):315–326. doi:10.1038/nrclinonc.2009.64

    Article  CAS  PubMed  Google Scholar 

  19. Dome B, Hendrix MJ, Paku S, Tovari J, Timar J (2007) Alternative vascularization mechanisms in cancer: Pathology and therapeutic implications. Am J Pathol 170(1):1–15. doi:10.2353/ajpath.2007.060302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186. doi:10.1056/NEJM197111182852108

    Article  CAS  PubMed  Google Scholar 

  21. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62. doi:10.1126/science.1104819

    Article  CAS  PubMed  Google Scholar 

  22. Fitzgibbons PL, Page DL, Weaver D, Thor AD, Allred DC, Clark GM, Ruby SG, O’Malley F, Simpson JF, Connolly JL, Hayes DF, Edge SB, Lichter A, Schnitt SJ (2000) Prognostic factors in breast cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med 124(7):966–978. doi:10.1043/0003-9985(2000)124<0966:PFIBC>2.0.CO;2

    CAS  PubMed  Google Scholar 

  23. Vermeulen PB, Gasparini G, Fox SB, Colpaert C, Marson LP, Gion M, Belien JA, de Waal RM, Van Marck E, Magnani E, Weidner N, Harris AL, Dirix LY (2002) Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer 38(12):1564–1579

    Article  CAS  PubMed  Google Scholar 

  24. Elagoz S, Egilmez R, Koyuncu A, Muslehiddinoglu A, Arici S (2006) The intratumoral microvessel density and expression of bFGF and nm23-H1 in colorectal cancer. Pathol Oncol Res 12(1):21–27, doi:PAOR.2006.12.1.0021

    Article  CAS  PubMed  Google Scholar 

  25. Marson LP, Kurian KM, Miller WR, Dixon JM (1999) Reproducibility of microvessel counts in breast cancer specimens. Br J Cancer 81(6):1088–1093. doi:10.1038/sj.bjc.6690811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fox SB, Leek RD, Weekes MP, Whitehouse RM, Gatter KC, Harris AL (1995) Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, Chalkley count, and computer image analysis. J Pathol 177(3):275–283. doi:10.1002/path.1711770310

    Article  CAS  PubMed  Google Scholar 

  27. Ehling J, Bartneck M, Wei X, Gremse F, Fech V, Möckel D, Baeck C, Hittatiya K, Eulberg D, Luedde T (2014) CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis. Gut 63(12):1960–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kiessling F, Greschus S, Lichy MP, Bock M, Fink C, Vosseler S, Moll J, Mueller MM, Fusenig NE, Traupe H (2004) Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis. Nat Med 10(10):1133–1138

    Article  CAS  PubMed  Google Scholar 

  29. Gremse F, Grouls C, Palmowski M, Lammers T, de Vries A, Grüll H, Das M, Mühlenbruch G, Akhtar S, Schober A (2011) Virtual elastic sphere processing enables reproducible quantification of vessel stenosis at CT and MR angiography. Radiology 260(3):709–717

    Article  PubMed  Google Scholar 

  30. Schambach SJ, Bag S, Steil V, Isaza C, Schilling L, Groden C, Brockmann MA (2009) Ultrafast high-resolution in vivo volume-CTA of mice cerebral vessels. Stroke 40(4):1444–1450

    Article  PubMed  Google Scholar 

  31. Figueiredo G, Brockmann C, Boll H, Heilmann M, Schambach SJ, Fiebig T, Kramer M, Groden C, Brockmann MA (2012) Comparison of digital subtraction angiography, micro-computed tomography angiography and magnetic resonance angiography in the assessment of the cerebrovascular system in live mice. Clin Neuroradiol 22(1):21–28

    Article  PubMed  Google Scholar 

  32. Sawall S, Kuntz J, Socher M, Knaup M, Hess A, Bartling S, Kachelrieß M (2012) Imaging of cardiac perfusion of free-breathing small animals using dynamic phase-correlated micro-CT. Med Phys 39(12):7499–7506

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruslan Hlushchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hlushchuk, R., Barré, S., Djonov, V. (2016). Morphological Aspects of Tumor Angiogenesis. In: Ribatti, D. (eds) Tumor Angiogenesis Assays. Methods in Molecular Biology, vol 1464. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3999-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3999-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3997-8

  • Online ISBN: 978-1-4939-3999-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics