Skip to main content

Lateral (Parasagittal) Fluid Percussion Model of Traumatic Brain Injury

  • Protocol
  • First Online:
Injury Models of the Central Nervous System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1462))

Abstract

Fluid percussion was first conceptualized in the 1940s and has evolved into one of the leading laboratory methods for studying experimental traumatic brain injury (TBI). Over the decades, fluid percussion has been used in numerous species and today is predominantly applied to the rat. The fluid percussion technique rapidly injects a small volume of fluid, such as isotonic saline, through a circular craniotomy onto the intact dura overlying the brain cortex. In brief, the methods involve surgical production of a circular craniotomy, attachment of a fluid-filled conduit between the dura overlying the cortex and the outlet port of the fluid percussion device. A fluid pulse is then generated by the free-fall of a pendulum striking a piston on the fluid-filled cylinder of the device. The fluid enters the cranium, producing a compression and displacement of the brain parenchyma resulting in a sharp, high magnitude elevation of intracranial pressure that is propagated diffusely through the brain. This results in an immediate and transient period of traumatic unconsciousness as well as a combination of focal and diffuse damage to the brain, which is evident upon histological and behavioral analysis. Numerous studies have demonstrated that the rat fluid percussion model reproduces a wide range of pathological features associated with human TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thompson HJ, Lifshitz J, Marklund N, Grady MS, Graham DI, Hovda DA, McIntosh TK (2005) Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma 22:42–75

    Article  PubMed  Google Scholar 

  2. Alder J, Fujioka W, Lifshitz J, Crockett DP, Thakker-Varia S (2011) Lateral fluid percussion: model of traumatic brain injury in mice. J Vis Exp (54)

    Google Scholar 

  3. Carbonell WS, Maris DO, McCall T, Grady MS (1998) Adaptation of the fluid percussion injury model to the mouse. J Neurotrauma 15:217–229

    Article  CAS  PubMed  Google Scholar 

  4. Povlishock JT, Becker DP, Cheng CL, Vaughan GW (1983) Axonal change in minor head injury. J Neuropathol Exp Neurol 42:225–242

    Article  CAS  PubMed  Google Scholar 

  5. Hartl R, Medary M, Ruge M, Arfors KE, Ghajar J (1997) Blood-brain barrier breakdown occurs early after traumatic brain injury and is not related to white blood cell adherence. Acta Neurochir Suppl 70:240–242

    CAS  PubMed  Google Scholar 

  6. Millen JE, Glauser FL, Fairman RP (1985) A comparison of physiological responses to percussive brain trauma in dogs and sheep. J Neurosurg 62:587–591

    Article  CAS  PubMed  Google Scholar 

  7. Pfenninger EG, Reith A, Breitig D, Grunert A, Ahnefeld FW (1989) Early changes of intracranial pressure, perfusion pressure, and blood flow after acute head injury. Part 1: An experimental study of the underlying pathophysiology. J Neurosurg 70:774–779

    Article  CAS  PubMed  Google Scholar 

  8. Denny-Brown D, Russell WR (1940) Experimental cerebral concussion. J Physiol 99:153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gurdjian ES, Lissner HR, Webster JE, Latimer FR, Haddad BF (1954) Studies on experimental concussion: relation of physiologic effect to time duration of intracranial pressure increase at impact. Neurology 4:674–681

    Article  CAS  PubMed  Google Scholar 

  10. Lindgren S, Rinder L (1966) Experimental studies in head injury. II. Pressure propagation in “percussion concussion”. Biophysik 3:174–180

    Article  CAS  PubMed  Google Scholar 

  11. Metz B (1971) Acetylcholine and experimental brain injury. J Neurosurg 35:523–528

    Article  CAS  PubMed  Google Scholar 

  12. Stalhammar D (1975) Experimental brain damage from fluid pressures due to impact acceleration. 1. Design of experimental procedure. Acta Neurol Scand 52:7–26

    Article  CAS  PubMed  Google Scholar 

  13. Stalhammar D (1975) Experimental brain damage from fluid pressures due to impact acceleration. 2. Pathophysiological observations. Acta Neurol Scand 52:27–37

    Article  CAS  PubMed  Google Scholar 

  14. Stalhammar D, Olsson Y (1975) Experimental brain damage from fluid pressures due to impact acceleration. 3. Morphological observations. Acta Neurol Scand 52:38–55

    Article  CAS  PubMed  Google Scholar 

  15. Sullivan HG, Martinez J, Becker DP, Miller JD, Griffith R, Wist AO (1976) Fluid-percussion model of mechanical brain injury in the cat. J Neurosurg 45:521–534

    Article  CAS  PubMed  Google Scholar 

  16. Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, Young HF, Hayes RL (1987) A fluid percussion model of experimental brain injury in the rat. J Neurosurg 67:110–119

    Article  CAS  PubMed  Google Scholar 

  17. McIntosh TK, Vink R, Noble L, Yamakami I, Fernyak S, Soares H, Faden AL (1989) Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neuroscience 28:233–244

    Article  CAS  PubMed  Google Scholar 

  18. Statler KD, Alexander H, Vagni V, Holubkov R, Dixon CE, Clark RS, Jenkins L, Kochanek PM (2006) Isoflurane exerts neuroprotective actions at or near the time of severe traumatic brain injury. Brain Res 1076:216–224

    Article  CAS  PubMed  Google Scholar 

  19. Kawaguchi M, Furuya H, Patel PM (2005) Neuroprotective effects of anesthetic agents. J Anesth 19:150–156

    Article  PubMed  Google Scholar 

  20. Koerner IP, Brambrink AM (2006) Brain protection by anesthetic agents. Curr Opin Anaesthesiol 19:481–486

    Article  PubMed  Google Scholar 

  21. Matchett GA, Allard MW, Martin RD, Zhang JH (2009) Neuroprotective effect of volatile anesthetic agents: molecular mechanisms. Neurol Res 31:128–134

    Article  CAS  PubMed  Google Scholar 

  22. Statler KD, Alexander H, Vagni V, Dixon CE, Clark RS, Jenkins L, Kochanek PM (2006) Comparison of seven anesthetic agents on outcome after experimental traumatic brain injury in adult, male rats. J Neurotrauma 23:97–108

    Article  PubMed  Google Scholar 

  23. Statler KD, Kochanek PM, Dixon CE, Alexander HL, Warner DS, Clark RS, Wisniewski SR, Graham SH, Jenkins LW, Marion DW, Safar PJ (2000) Isoflurane improves long-term neurologic outcome versus fentanyl after traumatic brain injury in rats. J Neurotrauma 17:1179–1189

    Article  CAS  PubMed  Google Scholar 

  24. Udomphorn Y, Armstead WM, Vavilala MS (2008) Cerebral blood flow and autoregulation after pediatric traumatic brain injury. Pediatr Neurol 38:225–234

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bouma GJ, Muizelaar JP (1992) Cerebral blood flow, cerebral blood volume, and cerebrovascular reactivity after severe head injury. J Neurotrauma 9(Suppl 1):S333–S348

    PubMed  Google Scholar 

  26. Bouma GJ, Muizelaar JP (1995) Cerebral blood flow in severe clinical head injury. New Horiz 3:384–394

    CAS  PubMed  Google Scholar 

  27. Brown JI, Moulton RJ, Konasiewicz SJ, Baker AJ (1998) Cerebral oxidative metabolism and evoked potential deterioration after severe brain injury: new evidence of early posttraumatic ischemia. Neurosurgery 42:1057–1063, discussion 1063-1054

    Article  CAS  PubMed  Google Scholar 

  28. Philip S, Udomphorn Y, Kirkham FJ, Vavilala MS (2009) Cerebrovascular pathophysiology in pediatric traumatic brain injury. J Trauma 67:S128–S134

    Article  CAS  PubMed  Google Scholar 

  29. Christensen MS, Hoedt-Rasmussen K, Lassen NA (1967) Cerebral vasodilatation by halothane anaesthesia in man and its potentiation by hypotension and hypercapnia. Br J Anaesth 39:927–934

    Article  CAS  PubMed  Google Scholar 

  30. Bain JA, Catton DV, Cox JM, Spoerel WE (1967) The effect of general anaesthesia on the tolerance of cerebral ischaemia in rabbits. Can Anaesth Soc J 14:69–78

    Article  CAS  PubMed  Google Scholar 

  31. Jennett WB, Barker J, Fitch W, McDowall DG (1969) Effect of anaesthesia on intracranial pressure in patients with space-occupying lesions. Lancet 1:61–64

    CAS  PubMed  Google Scholar 

  32. McDowall DG, Barker J, Jennett WB (1966) Cerebro-spinal fluid pressure measurements during anaesthesia. Anaesthesia 21:189–201

    Article  CAS  PubMed  Google Scholar 

  33. Smith AL, Wollman H (1972) Cerebral blood flow and metabolism: effects of anesthetic drugs and techniques. Anesthesiology 36:378–400

    Article  CAS  PubMed  Google Scholar 

  34. Rivard AL, Simura KJ, Mohammed S, Magembe AJ, Pearson HM, Hallman MR, Barnett SJ, Gatlin DL, Gallegos RP, Bianco RW (2006) Rat intubation and ventilation for surgical research. J Invest Surg 19:267–274

    Article  PubMed  Google Scholar 

  35. Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, Jane JA, Marmarou A, Foulkes MA (1993) The role of secondary brain injury in determining outcome from severe head injury. J Trauma 34:216–222

    Article  CAS  PubMed  Google Scholar 

  36. Bramlett HM, Dietrich WD, Green EJ (1999) Secondary hypoxia following moderate fluid percussion brain injury in rats exacerbates sensorimotor and cognitive deficits. J Neurotrauma 16:1035–1047

    Article  CAS  PubMed  Google Scholar 

  37. Bramlett HM, Green EJ, Dietrich WD (1999) Exacerbation of cortical and hippocampal CA1 damage due to posttraumatic hypoxia following moderate fluid-percussion brain injury in rats. J Neurosurg 91:653–659

    Article  CAS  PubMed  Google Scholar 

  38. Feng JF, Zhao X, Gurkoff GG, Van KC, Shahlaie K, Lyeth BG (2012) Post-traumatic hypoxia exacerbates neuronal cell death in the hippocampus. J Neurotrauma 29:1167–1179

    Article  PubMed  PubMed Central  Google Scholar 

  39. Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99:4–9

    Article  CAS  PubMed  Google Scholar 

  40. Costa DL, Lehmann JR, Harold WM, Drew RT (1986) Transoral tracheal intubation of rodents using a fiberoptic laryngoscope. Lab Anim Sci 36:256–261

    CAS  PubMed  Google Scholar 

  41. Thet LA (1983) A simple method of intubating rats under direct vision. Lab Anim Sci 33:368–369

    CAS  PubMed  Google Scholar 

  42. Mrozek S, Vardon F, Geeraerts T (2012) Brain temperature: physiology and pathophysiology after brain injury. Anesthesiol Res Pract 2012:989487

    PubMed  PubMed Central  Google Scholar 

  43. Jiang JY, Lyeth BG, Clifton GL, Jenkins LW, Hamm RJ, Hayes RL (1991) Relationship between body and brain temperature in traumatically brain-injured rodents. J Neurosurg 74:492–496

    Article  CAS  PubMed  Google Scholar 

  44. Childs C (2008) Human brain temperature: regulation, measurement and relationship with cerebral trauma: part 1. Br J Neurosurg 22:486–496

    Article  PubMed  Google Scholar 

  45. Sacho RH, Childs C (2008) The significance of altered temperature after traumatic brain injury: an analysis of investigations in experimental and human studies: part 2. Br J Neurosurg 22:497–507

    Article  CAS  PubMed  Google Scholar 

  46. Thompson HJ, Tkacs NC, Saatman KE, Raghupathi R, McIntosh TK (2003) Hyperthermia following traumatic brain injury: a critical evaluation. Neurobiol Dis 12:163–173

    Article  PubMed  Google Scholar 

  47. Marion DW, Penrod LE, Kelsey SF, Obrist WD, Kochanek PM, Palmer AM, Wisniewski SR, DeKosky ST (1997) Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med 336:540–546

    Article  CAS  PubMed  Google Scholar 

  48. Clifton GL, Allen S, Barrodale P, Plenger P, Berry J, Koch S, Fletcher J, Hayes RL, Choi SC (1993) A phase II study of moderate hypothermia in severe brain injury. J Neurotrauma 10:263–271, discussion 273

    Article  CAS  PubMed  Google Scholar 

  49. Marion DW, Obrist WD, Carlier PM, Penrod LE, Darby JM (1993) The use of moderate therapeutic hypothermia for patients with severe head injuries: a preliminary report. J Neurosurg 79:354–362

    Article  CAS  PubMed  Google Scholar 

  50. Dietrich WD, Alonso O, Busto R, Globus MY, Ginsberg MD (1994) Post-traumatic brain hypothermia reduces histopathological damage following concussive brain injury in the rat. Acta Neuropathol 87:250–258

    Article  CAS  PubMed  Google Scholar 

  51. Clifton GL, Jiang JY, Lyeth BG, Jenkins LW, Hamm RJ, Hayes RL (1991) Marked protection by moderate hypothermia after experimental traumatic brain injury. J Cereb Blood Flow Metab 11:114–121

    Article  CAS  PubMed  Google Scholar 

  52. Jiang JY, Lyeth BG, Kapasi MZ, Jenkins LW, Povlishock JT (1992) Moderate hypothermia reduces blood-brain barrier disruption following traumatic brain injury in the rat. Acta Neuropathol 84:495–500

    Article  CAS  PubMed  Google Scholar 

  53. Lyeth BG, Jiang JY, Liu S (1993) Behavioral protection by moderate hypothermia initiated after experimental traumatic brain injury. J Neurotrauma 10:57–64

    Article  CAS  PubMed  Google Scholar 

  54. Hasegawa Y, Latour LL, Sotak CH, Dardzinski BJ, Fisher M (1994) Temperature dependent change of apparent diffusion coefficient of water in normal and ischemic brain of rats. J Cereb Blood Flow Metab 14:383–390

    Article  CAS  PubMed  Google Scholar 

  55. Rink A, Fung KM, Trojanowski JQ, Lee VM, Neugebauer E, McIntosh TK (1995) Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. Am J Pathol 147:1575–1583

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hicks RR, Zhang L, Atkinson A, Stevenon M, Veneracion M, Seroogy KB (2002) Environmental enrichment attenuates cognitive deficits, but does not alter neurotrophin gene expression in the hippocampus following lateral fluid percussion brain injury. Neuroscience 112:631–637

    Article  CAS  PubMed  Google Scholar 

  57. Sinson G, Voddi M, McIntosh TK (1995) Nerve growth factor administration attenuates cognitive but not neurobehavioral motor dysfunction or hippocampal cell loss following fluid-percussion brain injury in rats. J Neurochem 65:2209–2216

    Article  CAS  PubMed  Google Scholar 

  58. Vink R, Mullins PG, Temple MD, Bao W, Faden AI (2001) Small shifts in craniotomy position in the lateral fluid percussion injury model are associated with differential lesion development. J Neurotrauma 18:839–847

    Article  CAS  PubMed  Google Scholar 

  59. Floyd CL, Golden KM, Black RT, Hamm RJ, Lyeth BG (2002) Craniectomy position affects morris water maze performance and hippocampal cell loss after parasagittal fluid percussion. J Neurotrauma 19:303–316

    Article  PubMed  Google Scholar 

  60. Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728–741

    Article  PubMed  Google Scholar 

  61. Holland MC, Mackersie RC, Morabito D, Campbell AR, Kivett VA, Patel R, Erickson VR, Pittet JF (2003) The development of acute lung injury is associated with worse neurologic outcome in patients with severe traumatic brain injury. J Trauma 55:106–111

    Article  PubMed  Google Scholar 

  62. Rincon F, Ghosh S, Dey S, Maltenfort M, Vibbert M, Urtecho J, McBride W, Moussouttas M, Bell R, Ratliff JK, Jallo J (2012) Impact of acute lung injury and acute respiratory distress syndrome after traumatic brain injury in the United States. Neurosurgery 71:795–803

    Article  PubMed  Google Scholar 

  63. Bahloul M, Chaari AN, Kallel H, Khabir A, Ayadi A, Charfeddine H, Hergafi L, Chaari AD, Chelly HE, Ben Hamida C, Rekik N, Bouaziz M (2006) Neurogenic pulmonary edema due to traumatic brain injury: evidence of cardiac dysfunction. Am J Crit Care 15:462–470

    PubMed  Google Scholar 

  64. Baumann A, Audibert G, McDonnell J, Mertes PM (2007) Neurogenic pulmonary edema. Acta Anaesthesiol Scand 51:447–455

    Article  CAS  PubMed  Google Scholar 

  65. Hendricks HT, Heeren AH, Vos PE (2010) Dysautonomia after severe traumatic brain injury. Eur J Neurol 17:1172–1177

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce G. Lyeth Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Van, K.C., Lyeth, B.G. (2016). Lateral (Parasagittal) Fluid Percussion Model of Traumatic Brain Injury. In: Kobeissy, F., Dixon, C., Hayes, R., Mondello, S. (eds) Injury Models of the Central Nervous System. Methods in Molecular Biology, vol 1462. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3816-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3816-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3814-8

  • Online ISBN: 978-1-4939-3816-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics