Skip to main content

Myogenic Progenitors from Mouse Pluripotent Stem Cells for Muscle Regeneration

  • Protocol
  • First Online:
Skeletal Muscle Regeneration in the Mouse

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1460))

Abstract

Muscle homeostasis is maintained by resident stem cells which, in both pathologic and non-pathologic conditions, are able to repair or generate new muscle fibers. Although muscle stem cells have tremendous regenerative potential, their application in cell therapy protocols is prevented by several restrictions, including the limited ability to grow ex vivo. Since pluripotent stem cells have the unique potential to both self-renew and expand almost indefinitely, they have become an attractive source of progenitors for regenerative medicine studies. Our lab has demonstrated that embryonic stem cell (ES)-derived myogenic progenitors retain the ability to repair existing muscle fibers and contribute to the pool of resident stem cells. Because of their relevance in both cell therapy and disease modeling, in this chapter we describe the protocol to derive myogenic progenitors from murine ES cells followed by their intramuscular delivery in a murine muscular dystrophy model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122(2):289–301. doi:10.1016/j.cell.2005.05.010, S0092-8674(05)00455-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  2. Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 337(6203):176–179. doi:10.1038/337176a0

    Article  CAS  PubMed  Google Scholar 

  3. Sampaolesi M, Blot S, D’Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud JL, Galvez BG, Barthelemy I, Perani L, Mantero S, Guttinger M, Pansarasa O, Rinaldi C, Cusella De Angelis MG, Torrente Y, Bordignon C, Bottinelli R, Cossu G (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444(7119):574–579. doi:10.1038/nature05282, nature05282 [pii]

    Article  CAS  PubMed  Google Scholar 

  4. Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D’Antona G, Pellegrino MA, Barresi R, Bresolin N, De Angelis MG, Campbell KP, Bottinelli R, Cossu G (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301(5632):487–492. doi:10.1126/science.1082254, 1082254 [pii]

    Article  CAS  PubMed  Google Scholar 

  5. Tedesco FS, Hoshiya H, D’Antona G, Gerli MF, Messina G, Antonini S, Tonlorenzi R, Benedetti S, Berghella L, Torrente Y, Kazuki Y, Bottinelli R, Oshimura M, Cossu G (2011) Stem cell-mediated transfer of a human artificial chromosome ameliorates muscular dystrophy. Sci Transl Med 3(96):96ra78. doi:10.1126/scitranslmed.3002342, 3/96/96ra78 [pii]

    Article  CAS  PubMed  Google Scholar 

  6. Darabi R, Arpke RW, Irion S, Dimos JT, Grskovic M, Kyba M, Perlingeiro RC (2012) Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10(5):610–619. doi:10.1016/j.stem.2012.02.015, S1934-5909(12)00074-4 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Darabi R, Gehlbach K, Bachoo RM, Kamath S, Osawa M, Kamm KE, Kyba M, Perlingeiro RC (2008) Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat Med 14(2):134–143. doi:10.1038/nm1705, nm1705 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Darabi R, Pan W, Bosnakovski D, Baik J, Kyba M, Perlingeiro RC (2011) Functional myogenic engraftment from mouse iPS cells. Stem Cell Rev 7(4):948–957. doi:10.1007/s12015-011-9258-2

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tedesco FS, Gerli MF, Perani L, Benedetti S, Ungaro F, Cassano M, Antonini S, Tagliafico E, Artusi V, Longa E, Tonlorenzi R, Ragazzi M, Calderazzi G, Hoshiya H, Cappellari O, Mora M, Schoser B, Schneiderat P, Oshimura M, Bottinelli R, Sampaolesi M, Torrente Y, Broccoli V, Cossu G (2012) Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med 4(140):140ra189. doi:10.1126/scitranslmed.3003541, 4/140/140ra89 [pii]

    Article  Google Scholar 

  10. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi:10.1016/j.cell.2007.11.019, S0092-8674(07)01471-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024, S0092-8674(06)00976-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  12. Sterneckert JL, Reinhardt P, Scholer HR (2014) Investigating human disease using stem cell models. Nat Rev Genet 15(9):625–639. doi:10.1038/nrg3764, nrg3764 [pii]

    Article  CAS  PubMed  Google Scholar 

  13. Buckingham M, Relaix F (2007) The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 23:645–673. doi:10.1146/annurev.cellbio.23.090506.123438

    Article  CAS  PubMed  Google Scholar 

  14. Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435(7044):948–953. doi:10.1038/nature03594, nature03594 [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Iacovino M, Bosnakovski D, Fey H, Rux D, Bajwa G, Mahen E, Mitanoska A, Xu Z, Kyba M (2011) Inducible cassette exchange: a rapid and efficient system enabling conditional gene expression in embryonic stem and primary cells. Stem Cells 29(10):1580–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kyba M, Perlingeiro RC, Daley GQ (2002) HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109(1):29–37, S0092867402006803 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Darabi R, Santos FN, Filareto A, Pan W, Koene R, Rudnicki MA, Kyba M, Perlingeiro RC (2011) Assessment of the myogenic stem cell compartment following transplantation of Pax3/Pax7-induced embryonic stem cell-derived progenitors. Stem Cells 29(5):777–790. doi:10.1002/stem.625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sakurai H, Era T, Jakt LM, Okada M, Nakai S, Nishikawa S (2006) In vitro modeling of paraxial and lateral mesoderm differentiation reveals early reversibility. Stem Cells 24(3):575–586. doi:10.1634/stemcells.2005-0256, 2005-0256 [pii]

    Article  CAS  PubMed  Google Scholar 

  19. Magli A, Schnettler E, Rinaldi F, Bremer P, Perlingeiro RC (2013) Functional dissection of Pax3 in paraxial mesoderm development and myogenesis. Stem Cells 31(1):59–70. doi:10.1002/stem.1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Magli A, Schnettler E, Swanson SA, Borges L, Hoffman K, Stewart R, Thomson JA, Keirstead SA, Perlingeiro RC (2014) Pax3 and Tbx5 specify whether PDGFRalpha + cells assume skeletal or cardiac muscle fate in differentiating embryonic stem cells. Stem Cells 32(8):2072–2083. doi:10.1002/stem.1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Quinlan JG, Lyden SP, Cambier DM, Johnson SR, Michaels SE, Denman DL (1995) Radiation inhibition of mdx mouse muscle regeneration: dose and age factors. Muscle Nerve 18(2):201–206. doi:10.1002/mus.880180209

    Article  CAS  PubMed  Google Scholar 

  22. Wakeford S, Watt DJ, Partridge TA (1991) X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD. Muscle Nerve 14(1):42–50. doi:10.1002/mus.880140108

    Article  CAS  PubMed  Google Scholar 

  23. Arpke RW, Darabi R, Mader TL, Zhang Y, Toyama A, Lonetree CL, Nash N, Lowe DA, Perlingeiro RC, Kyba M (2013) A new immuno-, dystrophin-deficient model, the NSG-mdx(4Cv) mouse, provides evidence for functional improvement following allogeneic satellite cell transplantation. Stem Cells 31(8):1611–1620. doi:10.1002/stem.1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Couteaux R, Mira JC, d’Albis A (1988) Regeneration of muscles after cardiotoxin injury. I. Cytological aspects. Biol Cell 62(2):171–182, 0248-4900(88)90034-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  25. Mahdy MA, Lei HY, Wakamatsu J, Hosaka YZ, Nishimura T (2015) Comparative study of muscle regeneration following cardiotoxin and glycerol injury. Ann Anat 202:18–27. doi:10.1016/j.aanat.2015.07.002, S0940-9602(15)00103-X [pii]

    Article  PubMed  Google Scholar 

  26. Harris JB (2003) Myotoxic phospholipases A2 and the regeneration of skeletal muscles. Toxicon 42(8):933–945. doi:10.1016/j.toxicon.2003.11.011, S0041010103003313 [pii]

    Article  CAS  PubMed  Google Scholar 

  27. Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84(1):209–238. doi:10.1152/physrev.00019.2003, 84/1/209 [pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Perlingeiro laboratory is supported by grants from the NIH (R01 AR055299), the Muscular Dystrophy Association (MDA #238127) and Parent Project Muscular Dystrophy (PPMD #00031645). A.M. was funded by a fellowship from Regenerative Medicine Minnesota (MRM 2015 PDSCH 003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita C. R. Perlingeiro Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Magli, A., Incitti, T., Perlingeiro, R.C.R. (2016). Myogenic Progenitors from Mouse Pluripotent Stem Cells for Muscle Regeneration. In: Kyba, M. (eds) Skeletal Muscle Regeneration in the Mouse. Methods in Molecular Biology, vol 1460. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3810-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3810-0_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3808-7

  • Online ISBN: 978-1-4939-3810-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics