Skip to main content

Organic Cation Transport Measurements Using Fluorescence Techniques

  • Protocol
  • First Online:
Neurotransmitter Transporters

Part of the book series: Neuromethods ((NM,volume 118))

Abstract

Analysis of transport processes using fluorescent substrates is a powerful tool to dynamically study various aspects of several transporters. The fluorescent organic cation 4(4-dimethylaminostyryl)-N-methylpyridinium (ASP+) due to its specific fluorescence properties is a valuable probe for studying transport mediated by transporters of organic cations. ASP+ is accepted by many members of the family of organic cation transporters and can be utilized in a wide spectrum of experimental settings analyzing such transport dynamics from the in vitro to the in vivo situation. Since its first introduction in 1994, ASP+ has been widely used by several laboratories worldwide for all kinds of studies analyzing organic cation transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bresler VM, Bresler SE, Nikiforov AA (1975) Structure and active transport in the plasma membrane of the tubules of frog kidney. Biochim Biophys Acta 406:526–537

    Article  CAS  PubMed  Google Scholar 

  2. Bresler VM, Natochin I (1973) Diuretic inhibition of fluorescein secretion in the proximal kidney tubules of the frog (a study during life by the contact microscopy method). Biull Eksp Biol Med 75:67–69

    CAS  PubMed  Google Scholar 

  3. Steinhausen M, Müller P, Parekh N (1976) Renal test dyes IV. Intravital fluorescence microscopy and microphotometry of the tubularly secreted dye sulfonefluorescein. Pflugers Arch 364:83–89

    Article  CAS  PubMed  Google Scholar 

  4. Rohlicek V, Ullrich KJ (1994) Simple device for continuous measurement of fluorescent anions and cations in the rat kidney in situ. Ren Physiol Biochem 17:57–61

    CAS  PubMed  Google Scholar 

  5. Pietruck F, Ullrich KJ (1995) Transport interactions of different organic cations during their excretion by the intact rat kidney. Kidney Int 47:1647–1657

    Article  CAS  PubMed  Google Scholar 

  6. Ciarimboli G, Schlatter E (2005) Regulation of organic cation transport. Pflugers Arch 449:423–441

    Article  CAS  PubMed  Google Scholar 

  7. Ciarimboli G (2008) Organic cation transporters. Xenobiotica 38:936–971

    Article  CAS  PubMed  Google Scholar 

  8. Koepsell H, Endou H (2004) The SLC22 drug transporter family. Pflugers Arch 447:666–676

    Article  CAS  PubMed  Google Scholar 

  9. Koepsell H (2004) Polyspecific organic cation transporters: their functions and interactions with drugs. Trends Pharmacol Sci 25:375–381

    Article  CAS  PubMed  Google Scholar 

  10. Shaikh M, Mohanty J, Singh PK et al (2010) Contrasting solvent polarity effect on the photophysical properties of two newly synthesized aminostyryl dyes in the lower and in the higher solvent polarity regions. J Phys Chem A 114:4507–4519

    Article  CAS  PubMed  Google Scholar 

  11. Haidekker MA, Brady TP, Lichlyter D et al (2005) Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes. Bioorg Chem 33:415–425

    Article  CAS  PubMed  Google Scholar 

  12. Ramadass R, Bereiter-Hahn J (2007) Photophysical properties of DASPMI as revealed by spectrally resolved fluorescence decays. J Phys Chem B 111:7681–7690

    Article  CAS  PubMed  Google Scholar 

  13. Glazachev YI, Semenova AD, Kryukova NA et al (2012) Express method for determination of low value of trans-membrane potential of living cells with fluorescence probe: application on haemocytes at immune responses. J Fluoresc 22:1223–1229

    Article  CAS  PubMed  Google Scholar 

  14. Wilde S, Schlatter E, Koepsell H et al (2009) Calmodulin-associated post-translational regulation of rat organic cation transporter 2 in the kidney is gender dependent. Cell Mol Life Sci 66:1729–1740

    Article  CAS  PubMed  Google Scholar 

  15. Villa AM, Doglia SM (2004) Mitochondria in tumor cells studied by laser scanning confocal microscopy. J Biomed Opt 9:385–394

    Article  CAS  PubMed  Google Scholar 

  16. Pietruck F, Hörbelt M, Feldkamp T et al (2006) Digital fluorescence imaging of organic cation transport in freshly isolated rat proximal tubules. Drug Metab Dispos 34:339–342

    CAS  PubMed  Google Scholar 

  17. Tanner GA, Sandoval RM, Dunn KW (2004) Two-photon in vivo microscopy of sulfonefluorescein secretion in normal and cystic rat kidneys. Am J Physiol Renal Physiol 286:F152–F160

    Article  CAS  PubMed  Google Scholar 

  18. Hörbelt M, Wotzlaw C, Sutton TA et al (2007) Organic cation transport in the rat kidney in vivo visualized by time-resolved two-photon microscopy. Kidney Int 72:422–429

    Article  PubMed  Google Scholar 

  19. Hohage H, Stachon A, Feidt C et al (1998) Regulation of organic cation transport in IHKE-1 and LLC-PK1 cells. Fluorimetric studies with 4-(4-dimethylaminostyryl)-N-methylpyridinium. J Pharmacol Exp Ther 286:305–310

    CAS  PubMed  Google Scholar 

  20. Hohage H, Stachon A, Feidt C et al (1998) Effects of protein kinase activation on organic cation transport in human proximal tubular cells. Nova Acta Leopoldina NF 306:293–298

    Google Scholar 

  21. Stachon A, Schlatter E, Hohage H (1996) Dynamic monitoring of organic cation transport processes by fluorescence measurements in LLC-PK1 cells. Cell Physiol Biochem 6:72–81

    Article  CAS  Google Scholar 

  22. Stachon A, Hohage H, Feidt C et al (1997) Characterization of organic cation transport across the apical membrane of proximal tubular cells with the fluorescent dye 4-Di-1-ASP. Cell Physiol Biochem 7:264–274

    Article  CAS  Google Scholar 

  23. Stachon A, Hohage H, Feidt C et al (1998) Cytostatics and neurotransmitters are transported by the organic cation transporter in proximal cells. Nova Acta Leopoldina NF 78(306):333–338

    CAS  Google Scholar 

  24. Gorboulev V, Ulzheimer JC, Akhoundova A et al (1997) Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 16:871–881

    Article  CAS  PubMed  Google Scholar 

  25. Koepsell H (1998) Organic cation transporters in intestine, kidney, liver, and brain. Annu Rev Physiol 60:243–266

    Article  CAS  PubMed  Google Scholar 

  26. Okuda M, Saito H, Urakami Y et al (1996) cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem Biophys Res Commun 224:500–507

    Article  CAS  PubMed  Google Scholar 

  27. Holle SK, Ciarimboli G, Edemir B et al (2011) Properties and regulation of organic cation transport in freshly isolated mouse proximal tubules analyzed with a fluorescence reader-based method. Pflugers Arch 462:359–369

    Article  CAS  PubMed  Google Scholar 

  28. Pietig G, Mehrens T, Hirsch JR et al (2001) Properties and regulation of organic cation transport in freshly isolated human proximal tubules. J Biol Chem 276:33741–33746

    Article  CAS  PubMed  Google Scholar 

  29. Urakami Y, Akazawa M, Saito H et al (2002) cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol 13:1703–1710

    Article  CAS  PubMed  Google Scholar 

  30. Motohashi H, Sajurai Y, Saito H et al (2002) Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol 13:866–874

    CAS  PubMed  Google Scholar 

  31. Mehrens T, Lelleck S, Çetinkaya I et al (2000) The affinity of the organic cation transporter rOCT1 is increased by protein kinase C dependent phosphorylation. J Am Soc Nephrol 11:1216–1224

    CAS  PubMed  Google Scholar 

  32. Ciarimboli G, Struwe K, Arndt P et al (2004) Regulation of the human organic cation transporter hOCT1. J Cell Physiol 201:420–428

    Article  CAS  PubMed  Google Scholar 

  33. Ciarimboli G, Koepsell H, Iordanova M et al (2005) Individual PKC-phosphorylation sites in organic cation transporter 1 determine substrate selectivity and transport regulation. J Am Soc Nephrol 16:1562–1570

    Article  CAS  PubMed  Google Scholar 

  34. Guckel D, Ciarimboli G, Pavenstädt H et al (2012) Regulation of organic cation transport in isolated mouse proximal tubules involves complex changes in protein trafficking and substrate affinity. Cell Physiol Biochem 30:269–281

    Article  CAS  PubMed  Google Scholar 

  35. Massmann V, Edemir B, Schlatter E et al (2014) The organic cation transporter 3 (OCT3) as molecular target of psychotropic drugs: transport characteristics and acute regulation of cloned murine OCT3. Pflügers Arch 466(3):517–527

    Google Scholar 

  36. Schlatter E, Klassen P, Massmann Vet al (2914) Mouse organic cation transporter 1 determines properties and regulation of basolateral organic cation transport in renal proximal tubules. Pflügers Arch 466(8):1581–1589

    Google Scholar 

  37. Ciarimboli G, Ludwig T, Lang D et al (2005) Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol 167:1477–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ciarimboli G, Lancaster CS, Schlatter E et al (2012) Proximal tubular secretion of creatinine by organic cation transporter OCT2 in cancer patients. Clin Cancer Res 18:1101–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmidt-Lauber C, Harrach S, Pap T et al (2012) Transport mechanisms and their pathology-induced regulation govern tyrosine kinase inhibitor delivery in rheumatoid arthritis. PLoS One 7:e52247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grigat S, Fork C, Bach M et al (2009) The carnitine transporter SLC22A5 is not a general drug transporter, but it efficiently translocates mildronate. Drug Metab Dispos 37:330–337

    Article  CAS  PubMed  Google Scholar 

  41. Russ H, Gliese M, Sonna J et al (1992) The extraneuronal transport mechanism for noradrenaline (uptake2) avidly transports 1-methyl-4-phenylpyridinium (MPP+). Naunyn Schmiedebergs Arch Pharmacol 346:158–165

    Article  CAS  PubMed  Google Scholar 

  42. Kitayama S, Shimada S, Uhl GR (1992) Parkinsonism-inducing neurotoxin MPP+: uptake and toxicity in nonneuronal COS cells expressing dopamine transporter cDNA. Ann Neurol 32:109–111

    Article  CAS  PubMed  Google Scholar 

  43. Schwartz JW, Blakely RD, DeFelice LJ (2003) Binding and transport in norepinephrine transporters. Real-time, spatially resolved analysis in single cells using a fluorescent substrate. J Biol Chem 278:9768–9777

    Article  CAS  PubMed  Google Scholar 

  44. Schwartz JW, Novarino G, Piston DW et al (2005) Substrate binding stoichiometry and kinetics of the norepinephrine transporter. J Biol Chem 280:19177–19184

    Article  CAS  PubMed  Google Scholar 

  45. Bolan EA, Kivell B, Jaligam V et al (2007) D2 receptors regulate dopamine transporter function via an extracellular signal-regulated kinases 1 and 2-dependent and phosphoinositide 3 kinase-independent mechanism 1. Mol Pharmacol 71:1222–1232

    Article  CAS  PubMed  Google Scholar 

  46. Oz M, Libby T, Kivell B et al (2010) Real-time, spatially resolved analysis of serotonin transporter activity and regulation using the fluorescent substrate, ASP+. J Neurochem 114:1019–1029

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work from the authors’ laboratory described here was supported by the German Research Council (Schl 277/8-1 to 8-4 and 12-3 and CI 107/4-1 to 4-3), the German Krebshilfe Foundation (#108539), the Interdisciplinary Center of Clinical Research (IZKF, Cia2/013/13), and the Innovative Medical Research (IMF) of the Medical Faculty of the University Münster, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eberhard Schlatter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ciarimboli, G., Schlatter, E. (2016). Organic Cation Transport Measurements Using Fluorescence Techniques. In: Bönisch, H., Sitte, H. (eds) Neurotransmitter Transporters. Neuromethods, vol 118. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3765-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3765-3_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3763-9

  • Online ISBN: 978-1-4939-3765-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics