Skip to main content

The Primate Wrist

  • Chapter
  • First Online:
The Evolution of the Primate Hand

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

Abstract

This chapter reviews our current understanding of the extant primate wrist. Following Wood Jones and Napier, the morphology of the primate wrist can be generally described as primitive. It is this primitiveness that allows for the great degree of versatility in wrist function that primates require to navigate their complex locomotor and manipulative environments. This chapter focuses on the variation in bony morphology across different primate clades, ranging from strepsirrhines to hominoids, and the functional implications of this morphological variation with regards to hand posture and loading during locomotion and manipulation. Morphological information is divided broadly into four articular regions of the wrist –the antebrachiocarpal, radial carpometacarpal, midcarpal, and ulnar carpometacarpal joints – with further discussion of individual carpals bones and distinct features of particular taxa. Primitive features of the wrist are discussed within a broader mammalian comparative context, while the functional implications of specialized or convergent morphology is highlighted within and across taxa and clades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the particular Macaca specimen depicted in Fig. 3.6 and adapted from Jouffroy and Medina (2002) seems to display an unusual carpal placement that may suggest a greater degree of ulnar deviation (measured as 56°) than is typical for Macaca. Jouffroy and Medina (2002) do not provide information on the species or sample size. For comparison, Richmond (2006), using different methods, reports 45° ulnar deviation in Erythrocebus and 61° ulnar deviation in Papio.

    Fig. 3.6
    figure 6

    Radial carpometacarpal joints. Top row showing the articulated radial carpometacarpal joints in some strepsirrhines (radial view) and Cercopithecus (palmar and dorsal views). Bottom row showing articulated radial carpal joints in Hylobates (palmar, radial and dorsal views), and re-articulated carpals in Gorilla (radial and ulnar views). Carpal bones included in radial carpal joints are labelled. Abbreviations: Tm trapezium, Td trapezoid, S scaphoid, Oc os centrale, pp prepollex, C capitate, Mc1 first metacarpal, Mc2 second metacarpal. All specimens are shown as the right side and scaled to approximately the same size (scale represents 1 cm for each taxon)

References

  • Altner G (1971) Histologische und vergleichend-anatomische untersuchungen zur ontogenie und phylogenie des handskeletts von Tupaia glis und Microcebus murinus. Folia Primatol 17:1–106

    Google Scholar 

  • Beard KC, Teaford MF, Walker A (1986) New wrist bones of Proconsul africanus and P. nyanzae from Rusinga Island, Kenya. Folia Primatol 47:97–118

    Article  CAS  PubMed  Google Scholar 

  • Begun DR (1992) Miocene fossil hominids and the chimp-human clade. Science 257:1929–1933

    Article  CAS  PubMed  Google Scholar 

  • Begun DR (2004) Knuckle-walking and the origin of human bipedalism. In: Meldrum DJ, Hilton CE (eds) From biped to strider: the emergence of modern human walking, running, resource transport. Kluwer Academic/Plenum Publishers, New York, pp 9–33

    Chapter  Google Scholar 

  • Begun DR, Kivell TL (2011) Knuckle-walking in Sivapithecus? The combined effects of homology and homoplasy with possible implications for pongine dispersals. J Hum Evol 60:158–170

    Article  PubMed  Google Scholar 

  • Belliappa PP, Burke FD (1992) Excision of the pisiform in piso-triquetral osteoarthritis. J Hand Surg Br 17:133–136

    Article  CAS  PubMed  Google Scholar 

  • Boyer DM, Yapuncich GS, Chester SGB, Block JI, Godinot M (2013) Hands of early primates. Yearb Phys Anthropol 57:33–78

    Google Scholar 

  • Brand PW, Hollister A (1993) Clinical mechanics of the hand. Mosby Year Book, Chicago

    Google Scholar 

  • Cant JGH, Youlatos D, Rose MD (2001) Locomotor behavior of Lagothrix lagothricha and Ateles belzebuth in Yasuni National Park, Ecuador: general patterns and nonsuspensory modes. J Hum Evol 41:141–166

    Google Scholar 

  • Cartmill M, Milton K (1977) The lorisiform wrist joint and the evolution of “brachiating” adaptations in the Hominoidea. Am J Phys Anthropol 47:249–272

    Article  CAS  PubMed  Google Scholar 

  • Čihák R (1972) Ontogenesis of the skeleton and intrinsic muscles of the human hand and foot. Ergeb Anat Entwicklungsgesch 46:1–194

    Google Scholar 

  • Cheverud JM (1981) Epiphyseal union and dental eruption in Macaca mulatta. Am J Phys Anthropol 56:157–167

    Article  CAS  PubMed  Google Scholar 

  • Cooney WPI, Chao EY (1977) Biomechanical analysis of static forces in the thumb during hand function. J Bone Joint Surg Am 59:27–36

    PubMed  Google Scholar 

  • Corruccini RS (1978) Comparative osteometrics of the hominoid wrist joint, with special reference to knuckle-walking. J Hum Evol 7:307–321

    Article  Google Scholar 

  • Corruccini RS, Ciochon RL, McHenry HM (1975) Osteometric shape relationships in the wrist joint of some anthropoids. Folia Primatol 24:250–274

    Article  CAS  PubMed  Google Scholar 

  • Costello MB, Fragaszy DM (1988) Prehension in Cebus and Saimiri: I. Grip type and hand preference. Am J Primatol 15:235–245

    Article  Google Scholar 

  • Crisco JJ, Coburn JC, Moore DC, Akelman E, Weiss A-PC, Wolfe SW (2005) In vivo radiocarpal kinematics and the dart thrower’s motion. J Bone Joint Surg Am 87A:2729–2740

    Article  Google Scholar 

  • Curgy J-J (1965) Apparition et soudure des points d’ossification des membres chez les mammifères. Mém Mus Natl d’Histoire Nat Sér A Zool 32:173–307

    Google Scholar 

  • Dainton M, Macho GA (1999) Did knuckle-walking evolve twice? J Hum Evol 36:171–194

    Article  CAS  PubMed  Google Scholar 

  • Daver G, Berillon G, Grimaud-Hervé D (2012) Carpal kinematics in quadrupedal monkeys: towards a better understanding of wrist morphology and function. J Anat 220:42–56

    Article  PubMed  Google Scholar 

  • Diogo R, Wood B (2011) Soft-tissue anatomy of the primates: phylogenetic analyses based on the muscles of the head, neck, pectoral region and upper limb, with notes on the evolution of these muscles. J Anat 219:273–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckstein FM (1944) The pisiform bone. Nature 154:182

    Article  Google Scholar 

  • Etter H-UF (1974) Morphologisch- und metrisch-vergleichende Untersuchung am Handskelett rezenter Primaten Teil II. Gegenbaurs Morphol Jahrb 120:153–171

    CAS  PubMed  Google Scholar 

  • Feipel V, Rooze M, Louryan S, Lemort M (1994) Functional anatomy of the carpus in flexion and extension and in radial and ulnar deviations: an in vivo two- and three-dimensional CT study. In: Schuind F, An K-N, Cooney WP III, Garcia-Elias M (eds) Advances in the biomechanics of the hand and wrist. Plenum Press, New York, pp 255–270

    Chapter  Google Scholar 

  • Fisk G (1981) Biomechanics of the wrist joint. In: Tubiana R (ed) The hand, vol 1. W.B. Saunders, Philadelphia, pp 191–201

    Google Scholar 

  • Fleagle JG, Meldrum DJ (1988) Locomotor behavior and skeletal morphology of two sympatric pithecine monkeys, Pithecia pithecia and Chiropotes satanas. Am J Primatol 16:227–249

    Article  Google Scholar 

  • Flower WH (1885) An introduction to the osteology of the mammalia. Macmillan, London

    Book  Google Scholar 

  • Galliari CA (1988) A study of postnatal appendicular skeletal maturation in captive-born squirrel monkeys (Saimiri boliviensis). Am J Primatol 16:51–61

    Article  Google Scholar 

  • Garcia-Elias M, Smith DK, Ruby LK, Horii E, An K-N, Linscheid RL, Chao EY, Cooney WP (1994) Normal and abnormal carpal kinematics. In: Schuind F, An K-N, Cooney WP, Garcia-Elias M (eds) Advances in the biomechanics of the hand and wrist. Plenum, New York, pp 247–253

    Chapter  Google Scholar 

  • Gebo DL (1996) Climbing, brachiation and terrestrial quadrupedalism: historical precursors of hominid bipedalism. Am J Phys Anthropol 101:55–92

    Article  CAS  PubMed  Google Scholar 

  • Giebel CG (1879) Saügethiere: mammalia. In: Bronn HG (ed) Klassen und Ordnungen des Thier-reichs wissenschaftlich dargestellt in Wort und Bild 6. C.F. Winter’sche Verlagshandlung, Leipzig, pp 516–541

    Google Scholar 

  • Gillies CD (1929) The origin of the os pisiforme. J Anat 63:380–383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glassman DM (1983) Growth and development in the saddle-back tamarin: the sequence and timing of dental eruption and epiphyseal union. Am J Primatol 5:51–59

    Article  Google Scholar 

  • Godinot M, Beard KC (1991) Fossil primate hands: a review and an evolutionary inquiry emphasizing early forms. Hum Evol 6:307–354

    Article  Google Scholar 

  • Greulich WW, Pyle SI (1959) Atlas of skeletal development of the hand and wrist. Stanford University Press, Stanford

    Google Scholar 

  • Gross T, Kivell TL, Skinner MM, Nguyen NH, Pahr DH (2014) A CT-image-based framework for the holistic analysis of cortical and trabecular bone morphology. Palaeontol Electron 17:1–13

    Google Scholar 

  • Haines RM (1944) The mechanism of rotation at the first carpo-metacarpal joint. J Anat 78:44–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haines RW (1958) Arboreal or terrestrial ancestry of placental mammals. Q Rev Biol 33:1–23

    Article  CAS  PubMed  Google Scholar 

  • Hamrick MW (1996a) Functional morphology of the lemuriform wrist joints and the relationship between wrist morphology and positional behavior in arboreal primates. Am J Phys Anthropol 99:319–344

    Article  CAS  PubMed  Google Scholar 

  • Hamrick MW (1996b) Articular size and curvature as determinants of carpal joint mobility and stability in strepsirrhine primates. J Morphol 230:113–127

    Article  CAS  PubMed  Google Scholar 

  • Hamrick MW (1997) Functional osteology of the primate carpus with special reference to strepsirhini. Am J Phys Anthropol 104:105–116

    Article  CAS  PubMed  Google Scholar 

  • Harris HA (1944) The pisiform bone. Nature 153:715

    Article  Google Scholar 

  • Howell AB, Straus WL Jr (1933) The muscular system. In: Hartman GG, Straus WL Jr (eds) The anatomy of the rhesus monkey (Macaca mulatta). Hafner, New York, pp 89–175

    Google Scholar 

  • Hunt KD, Cant JGH, Gebo DL, Rose MD, Walker SE, Youlatos D (1996) Standardized descriptions of primate locomotor and postural modes. Primates 37:363–387

    Article  Google Scholar 

  • Huxley TH (1863) Evidence as to man’s place in nature. Williams and Norgate, London

    Google Scholar 

  • Jenkins FA Jr (1971) Limb posture and locomotion in the Virginia opossum (Didelphis marsupialis) and in other non-cursorial mammals. J Zool 165:303–315

    Article  Google Scholar 

  • Jenkins FA Jr (1981) Wrist rotation in primates: a critical adaptation for brachiators. Symp Zool Soc Lond 48:429–451

    Google Scholar 

  • Jenkins FA Jr, Fleagle JG (1975) Knuckle-walking and the functional anatomy of the wrists in living apes. In: Tuttle RH (ed) Primate functional morphology and evolution. Mouton, The Hague, pp 213–231

    Google Scholar 

  • Jouffroy FK (1975) Osteology and myology of the lemuriform postcranial skeleton. In: Tattersall I, Sussman RW (eds) Lemur biology. Plenum Press, New York, pp 149–192

    Chapter  Google Scholar 

  • Jouffroy FK (1991) La “main sans talon” du primate bipède. In: Coppens Y (ed) Origine(s) de la Bipédie chez les Hominidés. Center National de la Recherche Scientifique, Paris, pp 21–35

    Google Scholar 

  • Jouffroy FK, Lessertisseur J (1979) Relationships between limb morphology and locomotor adaptations among prosimians: an osteometric study. In: Morbeck ME, Preuschoft H, Gomberg N (eds) Environment, behavior, and morphology: dynamic interactions in primates. Gustav Fischer, New York, pp 143–181

    Google Scholar 

  • Jouffroy FK, Medina MF (2002) Radio-ulnar deviation of the primate carpus: an x-ray study. Z Morphol Anthropol 83:275–289

    PubMed  Google Scholar 

  • Kauer JMG (1986) The mechanism of the carpal joint. Clin Orthop Relat Res 202:16–26

    PubMed  Google Scholar 

  • Kindahl M (1944) On the development of the hand and foot in Tarsius tarsius and Microcebus myoxinus. Acta Zool 25:49–58

    Article  Google Scholar 

  • Kivell TL (2007) Ontogeny of the hominoid midcarpal joint and implications for the origin of human bipedalism. Ph.D. dissertation, University of Toronto

    Google Scholar 

  • Kivell TL (2011) A comparative analysis of the hominin triquetrum (SKX 3498) from Swartkrans, South Africa. S Afr J Sci 107:60–69

    Article  Google Scholar 

  • Kivell TL, Begun DR (2007) Frequency and timing of scaphoid-centrale fusion in hominoids. J Hum Evol 52:321–340

    Article  PubMed  Google Scholar 

  • Kivell TL, Begun DR (2009) New primate carpal bones from Rudabánya (late Miocene, Hungary): taxonomic and functional implications. J Hum Evol 57:697–709

    Article  PubMed  Google Scholar 

  • Kivell TL, Schmitt D (2009) Independent evolution of knuckle-walking in African apes shows that humans did not evolve from a knuckle-walking ancestor. Proc Natl Acad Sci U S A 106:14241–14246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kivell TL, Kibii JM, Churchill SE, Schmid P, Berger LR (2011) Australopithecus sediba hand demonstrates mosaic evolution of locomotor and manipulative abilities. Science 333:1411–1417

    Article  CAS  PubMed  Google Scholar 

  • Kjosness KM, Hines JE, Lovejoy CO, Reno PL (2014) The pisiform growth plate is lost in humans and supports a role for Hox in growth plate formation. J Anat 225:527–538

    Article  CAS  PubMed  Google Scholar 

  • Kuczynski K (1974) Carpometacarpal joint of the human thumb. J Anat 118:119–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leboucq H (1884) Recherches sur la morphologie du carpe chez les mammifères. Arch Biol 5:35–102

    Google Scholar 

  • Lemelin P, Schmitt D (1998) The relation between hand morphology and quadrupedalism in primates. Am J Phys Anthropol 105:185–197

    Article  CAS  PubMed  Google Scholar 

  • Lemelin P, Hamrick MW, Richmond BG, Godfrey LR, Jungers WL, Burney DA (2008) New hand bones of Hadropithecus stenognathus: implications for the paleobiology of the Archaeolemuridae. J Hum Evol 54:405–413

    Article  PubMed  Google Scholar 

  • Lewis OJ (1965) Evolutionary change in the primate wrist and inferior radioulnar joints. Anat Rec 151:275–286

    Article  CAS  PubMed  Google Scholar 

  • Lewis OJ (1969) The hominoid wrist joint. Am J Phys Anthropol 30:251–268

    Article  CAS  PubMed  Google Scholar 

  • Lewis OJ (1970) The development of the human wrist joint during the fetal period. Anat Rec 166:499–516

    Article  CAS  PubMed  Google Scholar 

  • Lewis OJ (1971a) Brachiation and the early evolution of the Hominoidea. Nature 230:577–578

    Article  CAS  PubMed  Google Scholar 

  • Lewis OJ (1971b) The contrasting morphology found in the wrist joint of semibrachiating monkeys and brachiating apes. Folia Primatol 16:248–256

    Article  CAS  PubMed  Google Scholar 

  • Lewis OJ (1972a) Osteological features characterizing the wrists of monkeys and apes, with a reconsideration of this region in Dryopithecus (Proconsul) africanus. Am J Phys Anthropol 36:45–58

    Article  CAS  PubMed  Google Scholar 

  • Lewis OJ (1972b) Evolution of the hominoid wrist. In: Tuttle RH (ed) The functional and evolutionary biology of primates. Aldine-Atherton, Chicago, pp 201–222

    Google Scholar 

  • Lewis OJ (1974) The wrist articulations of the Anthropoidea. In: Jenkins FA Jr (ed) Primate locomotion. Academic Press, New York, pp 143–169

    Chapter  Google Scholar 

  • Lewis OJ (1977) Joint remodeling and the evolution of the human hand. J Anat 123:157–201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis OJ (1985a) Derived morphology of the wrist articulations and theories of hominoid evolution. Part I The lorisine joints. J Anat 140:447–460

    PubMed  PubMed Central  Google Scholar 

  • Lewis OJ (1985b) Derived morphology of the wrist articulations and theories of hominoid evolution. Part II The midcarpal joints of higher primates. J Anat 142:151–172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis OJ (1989) Functional morphology of the evolving hand and foot. Clarendon Press, Oxford

    Google Scholar 

  • Lewis OJ, Hamshere RJ, Bucknill TM (1970) The anatomy of the wrist joint. J Anat 106:539–552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz R (1971) The functional interpretation of the thumb in the Hylobatidae. Proc. 3rd Int. Congr. Primat., Zurich 1970, vol 1, pp 130–136

    Google Scholar 

  • Lovejoy CO, Heiple KG, Meindl RS (2001) Palaeoanthroplogy: did our ancestors knuckle-walk? Nature 410:325–326

    Article  CAS  PubMed  Google Scholar 

  • Lovejoy CO, Simpson SW, White TD, Asfaw B, Suwa G (2009) Careful climbing in the Miocene: the forelimbs of Ardipithecus ramidus and humans are primitive. Science 326:70e-1-8

    Google Scholar 

  • Lucae JCG (1865) Die Hand und der Fuss. Ein Beitrag zur vergleichenden Osteologie der Menschen, Affen und Beutelthiere. Abhandlungen Senckenbergischen Naturforschende Gesellschaft 5:275–332

    Google Scholar 

  • Lyser M (1653) Culter anatomicus. Copenhagen

    Google Scholar 

  • MacConaill MA (1941) The mechanical anatomy of the carpus and its bearing on some surgical problems. J Anat 75:166–175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin RB, Burr DB, Sharkey N (1998) Skeletal tissue mechanics. Springer, New York

    Book  Google Scholar 

  • Marzke MW (1971) Origin of the human hand. Am J Phys Anthropol 34:61–84

    Article  CAS  PubMed  Google Scholar 

  • Marzke MW (1983) Joint function and grips of the Australopithecus afarensis hand, with special reference to the region of the capitate. J Hum Evol 12:197–211

    Article  Google Scholar 

  • Marzke MW (2013) Tool making, hand morphology and fossil hominins. Phil Trans R Soc B 368:1–8

    Article  Google Scholar 

  • Marzke MW, Marzke RF (1987) The third metacarpal styloid process in humans: origin and functions. Am J Phys Anthropol 73:415–431

    Article  CAS  PubMed  Google Scholar 

  • Marzke MW, Marzke RF (2000) Evolution of the human hand: approaches to acquiring, analysing and interpreting the anatomical evidence. J Anat 197:121–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Marzke MW, Morbeck ME, Alongi C, Fritz P (1987) Ossification of the hand and wrist in the chimpanzee. Am J Primatol 12:359 (abstract)

    Google Scholar 

  • Marzke MW, Wullstein KL, Viegas SF (1992) Evolution of the power (“squeeze”) grip and its morphological correlates in hominids. Am J Phys Anthropol 89:283–298

    Article  CAS  PubMed  Google Scholar 

  • Marzke MW, Wullstein KL, Viegas S (1994) Variability at the carpometacarpal and midcarpal joints involving the fourth metacarpal, hamate and lunate in Catarrhini. Am J Phys Anthropol 93:229–240

    Article  CAS  PubMed  Google Scholar 

  • Marzke MW, Toth N, Schick K, Reece S, Steinberg B, Hunt K, Linscheid RL, An K-N (1998) EMG study of hand muscle recruitment during hard hammer percussion manufacture of Oldowan tools. Am J Phys Anthropol 105:315–332

    Article  CAS  PubMed  Google Scholar 

  • Mendel FC (1979) The wrist joint of two-toed sloths and its relevance to brachiating adaptations in the Hominoidea. J Morphol 162:413–424

    Article  Google Scholar 

  • Michejda M, Bacher J (1980) Skeletal age as a determinant of gestation in Macaca mulatta: a radiographic study. J Med Primatol 10:293–301

    Google Scholar 

  • Mivart SG (1867) On the appendicular skeleton of the Primates. Phil Trans R Soc Lond 157:299–429

    Article  Google Scholar 

  • Mivart SG (1869) Contributions towards a more complete knowledge of the skeleton of the Primates. Part I The appendicular skeleton of Simia. Trans Zool Soc Lond 6:175–225

    Article  Google Scholar 

  • Moojen TM, Snel JG, Ritt MJ, Venema HW, Kauer JM, Bos KE (2003) In vivo analysis of carpal kinematics and comparative review of the literature. J Hand Surg 28A:81–87

    Article  Google Scholar 

  • Moritomo H, Viegas SF, Elder K, Nakamura K, DaSilva MF, Patterson RM (2000a) The scaphotrapezio-trapezoidal joint. Part 2: a kinematic study. J Hand Surg Am 25A:911–920

    Article  Google Scholar 

  • Moritomo H, Viegas SF, Nakamura K, DaSilva MF, Patterson RM (2000b) The scaphotrapezio-trapezoidal joint Part 1: an anatomic and radiographic study. J Hand Surg Am 25A:899–910

    Article  Google Scholar 

  • Moritomo H, Murase T, Goto A, Oka K, Sugamoto K, Yoshikawa H (2006) In vivo three-dimensional kinematics of the midcarpal joint of the wrist. J Bone Joint Surg 88A:611–621

    Article  Google Scholar 

  • Napier JR (1955) The form and function of the carpometacarpal joint of the thumb. J Anat 89:362–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Napier JR (1961) Prehensility and opposability in the hands of primates. Symp Zool Soc Lond 5:115–132

    Google Scholar 

  • Napier JR, Napier PH (1967) A handbook of living primates. Academic Press, New York

    Google Scholar 

  • Nayak UV (1933) The articulations of the carpus in Chiromys madagascarensis with reference to certain other lemurs. J Anat 68:109–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neu CP, Crisco JJ, Wolfe SW (2001) In vivo kinematic behavior of the radio-capitate joint during wrist flexion-extension and radio-ulnar deviation. J Biomech 34:1429–1438

    Article  CAS  PubMed  Google Scholar 

  • Newell-Morris L, Tarrant LH, Farenbach CE, Sackett GP (1980) Ossification in the hand of the pigtail macaque (Macaca nemestrina) 2: order of appearance of centers and variability in sequence. Am J Phys Anthropol 53:423–439

    Article  CAS  PubMed  Google Scholar 

  • Nissen HW, Riesen AH (1949) Onset of ossification in the epiphyses and short bones of the extremities in chimpanzee. Growth 13:45–70

    CAS  PubMed  Google Scholar 

  • Noback CV (1930) Digital epiphyses and carpal bones in the growing infant female gorilla with sitting height and estimated age. Zoologica 11:117–151

    Google Scholar 

  • O’Connor BL (1975) Functional morphology of cercopithecoid wrist and inferior radioulnar joints, and their bearing on some problems in evolution of Hominoidea. Am J Phys Anthropol 43:113–121

    Article  PubMed  Google Scholar 

  • O’Rahilly R (1953) A survey of carpal and tarsal anomalies. J Bone Joint Surg Am 35:626–642

    PubMed  Google Scholar 

  • Orr CM, Leventhal EL, Chivers SF, Marzke MW, Wolfe SW, Crisco JJ (2010) Studying primate carpal kinematics in three dimensions using a computed-tomography-based markerless registration method. Anat Rec 293:692–709

    Article  Google Scholar 

  • Orr CM, Tocheri MW, Burnett SE, Due Awe R, Saptomo EW, Sutkina T, Jamiko, Wasisto S, Morwood MJ, Jungers WL (2013) New wrist bones of Homo floresiensis from Liang Bua (Flores, Indonesia). J Hum Evol 64:109–129

    Article  PubMed  Google Scholar 

  • Owen R (1866) Osteological contributions to the natural history of the anthropoid apes (no. VII): comparison of the bones of the limbs of the Troglodytes Gorilla, Troglodytes niger, and of different varieties of the human race and on the general characters of the skeleton in Gorilla. Trans Zool Soc Lond 5:8–27

    Google Scholar 

  • Patel BA (2010) The interplay between speed, kinetics, and hand postures during primate terrestrial locomotion. Am J Phys Anthropol 141:222–234

    PubMed  Google Scholar 

  • Patel BA, Wunderlich RE (2010) Dynamic pressure patterns in the hands of olive baboons (Papio anubis) during terrestrial locomotion: implications for cercopithecoid primate hand morphology. Anat Rec 293:710–718

    Article  Google Scholar 

  • Patel BA, Larson SG, Stern JT Jr (2012) Electromyography of wrist and finger flexor muscles in olive baboons (Papio anubis). J Exp Biol 215:115–123

    Article  PubMed  Google Scholar 

  • Phillips IR (1976) Skeletal development in the foetal and neonatal marmoset (Callithrix jacchus). Lab Anim 10:317–333

    Article  CAS  PubMed  Google Scholar 

  • Pillai RR, Thoomukuntla B, Ateshian GA, Fischer KJ (2007) MRI-based modelling for evaluation of in vivo contact mechanics in the human wrist during active light grasp. J Biomech 40:2781–2787

    Article  PubMed  Google Scholar 

  • Playfair McMurrich J (1914) The nomenclature of the carpal bones. Anat Rec 8:173–182

    Article  Google Scholar 

  • Rafferty KL (1990) The functional and phylogenetic significance of the carpometacarpal joint of the thumb in anthropoid primates. M.A. dissertation, New York University

    Google Scholar 

  • Richmond BG (2006) Functional morphology of the midcarpal joint in knuckle-walkers and terrestrial quadrupeds. In: Ishida H, Pickford M, Tuttle R, Ogihara N, Nakatsukasa M (eds) Human origins and environmental backgrounds. Springer, New York, pp 105–122

    Chapter  Google Scholar 

  • Richmond BG, Begun DR, Strait DS (2001) Origin of human bipedalism: the knuckle-walking hypothesis revisited. Yearb Phys Anthropol 44:70–105

    Article  Google Scholar 

  • Richmond BG, Strait DS (2000) Evidence that humans evolved from a knuckle-walking ancestor. Nature 404:382–385

    Article  CAS  PubMed  Google Scholar 

  • Rose MD (1992) Kinematics of the trapezium-1st metacarpal joint in extant anthropoids and Miocene hominoids. J Hum Evol 22:255–266

    Article  Google Scholar 

  • Sarmiento EE (1985) Functional differences in the skeleton of wild and captive orang-utans and their adaptive significance. Ph.D. dissertation, New York University

    Google Scholar 

  • Sarmiento EE (1988) Anatomy of the hominoid wrist joint: its evolutionary and functional implications. Int J Primatol 9:281–345

    Article  Google Scholar 

  • Sarmiento EE (1994) Terrestrial traits in the hands and feet of gorillas. Am Mus Novit 309:1–56

    Google Scholar 

  • Scheuer L, Black S (eds) (2000) Developmental juvenile osteology. Academic Press, San Diego

    Google Scholar 

  • Schilling A-M, Tofanelli S, Hublin J-J, Kivell TL (2014) Trabecular bone structure in the primate wrist. J Morphol 275:572–585

    PubMed  Google Scholar 

  • Schmitt D (1994) Forelimb mechanics as a function of substrate type during quadrupedalism in two anthropoid primates. J Hum Evol 26:441–457

    Article  Google Scholar 

  • Schultz AH (1936) Characters common to higher primates and characters specific to man. Q Rev Biol 11:259–283

    Article  Google Scholar 

  • Schultz AH (1944) Age changes and variability in gibbons. Am J Phys Anthropol 2:1–129

    Article  Google Scholar 

  • Schwartz JH, Yamada TK (1998) Carpal anatomy and primate relationships. Anthropol Sci 106(Suppl):47–65

    Article  Google Scholar 

  • Sirianni JE, Swindler DR (1985) Growth and development of the pigtailed macaque. CRC Press, Boca Raton

    Google Scholar 

  • Skinner MM, Stephens NB, Tsegai ZJ, Foote AC, Nguyen NH, Gross T, Pahr DH, Hublin J-J, Kivell TL (2015) Human-like hand use in Australopithecus africanus. Science 347:395–399

    Article  CAS  PubMed  Google Scholar 

  • Sonenblum SE, Crisco JJ, Kang L, Akelman E (2004) In vivo motion of the scaphotrapezio-trapezoidal (STT) joint. J Biomech 37:645–652

    Article  CAS  PubMed  Google Scholar 

  • Spinozzi G, Truppa V, Laganà T (2004) Grasping behavior in tufted capuchin monkeys (Cebus apella): grip types and manual laterality for picking up a small food item. Am J Phys Anthropol 125:30–41

    Article  PubMed  Google Scholar 

  • Stafford BJ, Thorington RW Jr (1998) Carpal development and morphology in archontan mammals. J Morphol 235:135–155

    Article  CAS  PubMed  Google Scholar 

  • Strong RM (1925) The order, time, and rate of ossification of the albino rat (Mus norvegicus albinus) skeleton. Am J Anat 36:313–355

    Article  Google Scholar 

  • Taleisnik J (1985) The wrist. Churchill Livingstone, New York

    Google Scholar 

  • Tanner JM, Whitehouse RH, Cameron N, Marshall WA, Healey MJR, Goldstein H (1983) Assessment of skeletal maturity and prediction of adult height, 2nd edn. Academic Press, London

    Google Scholar 

  • Thurm DA, Samonds KW, Fleagle JG (1975) An atlas for the skeletal maturation of the cebus monkey; the first year. Harvard School of Public Health, Department of Nutrition, Boston

    Google Scholar 

  • Tocheri MW (2007) Three-dimensional riddles of the radial wrist: derived carpal and carpometacarpal joint morphology in the genus Homo and the implications for understanding the evolution of stone tool-related behaviors in hominins. Ph.D. dissertation, Arizona State University

    Google Scholar 

  • Tocheri MW, Marzke MW, Liu D, Bae M, Jones GP, Williams RC, Razdan A (2003) Functional capabilities of modern and fossil hominid hands: three-dimensional analysis of trapezia. Am J Phys Anthropol 122:101–112

    Article  CAS  PubMed  Google Scholar 

  • Tocheri MW, Razdan A, Williams RC, Marzke MW (2005) A 3D quantitative comparison of trapezium and trapezoid relative articular and nonarticular surface areas in modern humans and great apes. J Hum Evol 49:570–586

    Article  CAS  PubMed  Google Scholar 

  • Tocheri MW, Orr CM, Jacofsky MC, Marzke MW (2008) The evolutionary history of the hominin hand since the last common ancestor of Pan and Homo. J Anat 212:544–562.

    Google Scholar 

  • Tocheri MW, Orr CM, Larson SG, Sutikna T, Jatmiko, Saptomo EW, Awe Due R, Djubiantono T, Morwood MJ, Jungers WL (2007) The primitive wrist of Homo floresiensis and its implications for hominin evolution. Science 317:1743–1745

    Article  CAS  PubMed  Google Scholar 

  • Tocheri MW, Solhan CR, Orr CM, Femiani J, Frohlich B, Groves CP, Harcourt-Smith WE, Richmond BG, Shoelson B, Jungers WL (2011) Ecological divergence and medial cuneiform morphology in gorillas. J Hum Evol 60:171–184

    Article  PubMed  Google Scholar 

  • Tuttle RH (1967) Knuckle-walking and the evolution of hominoid hands. Am J Phys Anthropol 26:171–206

    Article  Google Scholar 

  • Tuttle RH (1969) Quantitative and functional studies on the hands of Anthropoidea; I The Hominoidea. J Morphol 128:309–364

    Article  CAS  PubMed  Google Scholar 

  • Tuttle RH (1975) Parallelism, brachiation, and hominoid phylogeny. In: Luckett WP, Szalay FS (eds) Phylogeny of the primates: a multidisciplinary approach. Plenum Press, New York, pp 447–480

    Chapter  Google Scholar 

  • van Wagenen G, Asling CW (1964) Ossification in the fetal monkey (Macaca mulatta). Am J Anat 114:107–132

    Article  Google Scholar 

  • Ward CV (2002) Interpreting the posture and locomotion of Australopithecus afarensis: where do we stand? Yearb Phys Anthropol 45:185–215

    Article  Google Scholar 

  • Ward CV, Leakey MG, Brown B, Brown F, Harris J, Walker A (1999) South Turkwel: a new Pliocene hominid site in Kenya. J Hum Evol 36:69–95

    Article  CAS  PubMed  Google Scholar 

  • Watts ES (1990) A comparative study of neonatal skeletal development in Cebus and other primates. Folia Primatol 54:217–224

    Article  CAS  PubMed  Google Scholar 

  • Whitehead PF (1993) Aspects of the anthropoid wrist and hand. In: Gebo DL (ed) Postcranial adaptation in nonhuman primates. Northern Illinois University Press, DeKalb, pp 96–120

    Google Scholar 

  • Williams SA (2010) Morphological integration and the evolution of knuckle-walking. J Hum Evol 58:432–440

    Article  PubMed  Google Scholar 

  • Winkler LA (1996) Appearance of ossification centers of the lower arm, wrist, lower leg, and ankle in immature orangutans and chimpanzees with an assessment of the relationship of ossification to dental development. Am J Phys Anthropol 99:191–203

    Google Scholar 

  • Wolfe SW, Neu CP, Crisco JJ III (2000) In vivo scaphoid, lunate and capitate kinematics in wrist flexion and extension. J Hand Surg 25A:860–869

    Article  Google Scholar 

  • Wood Jones F (1916) Arboreal man. Edward Arnold, London

    Google Scholar 

  • Wood Jones F (1942) The principles of anatomy as seen in the Hand, 2nd edn. Baillière, Tindall and Cox, London

    Google Scholar 

  • Yalden DW (1970) The functional morphology of the carpal bones in carnivores. Acta Anat 77:481–500

    Article  CAS  PubMed  Google Scholar 

  • Yalden DW (1971) The functional morphology of the carpus in ungulate mammals. Acta Anat 78:461–487

    Article  CAS  PubMed  Google Scholar 

  • Yalden DW (1972) The form and function of the carpal bones in some arboreally adapted mammals. Acta Anat 82:383–406

    Article  CAS  PubMed  Google Scholar 

  • Youlatos D (1996) Atelines, apes and wrist joints. Folia Primatol 67:193–198

    Article  CAS  PubMed  Google Scholar 

  • Ziemer LK (1978) Functional morphology of forelimb joints in the woolly monkey Lagothrix lagothricha. Contrib Primatol 14:1–130

    CAS  PubMed  Google Scholar 

  • Zihlman AL, Bolter DR, Boesch C (2007) Skeletal and dental growth and development in chimpanzees of the Taï National Park, Côte D’lvoire. J Zool 273:63–73

    Article  Google Scholar 

  • Zylstra M (1999) Functional morphology of the hominoid forelimb: implications for knuckle-walking and the origin of hominid bipedalism. Ph.D. dissertation, University of Toronto

    Google Scholar 

Download references

Acknowledgments

This review is the result of the knowledge, guidance, encouragement, expertise, generosity and patience of many, many people. Among them, I am grateful to David Begun with whom my interest in the wrist and hand initially developed, Daniel Schmitt and Roshna Wunderlich who taught and inspired me think about this anatomy in a completely new way, Lee Berger and Steve Churchill whose amazing fossil discoveries gave me the opportunity to move beyond the wrist, and Matthew Skinner, Jean-Jacques Hublin, Richard Lazenby and Dieter Pahr, who gave me the opportunity to look “inside” these bones for the first time. I thank the many museum curators whose generosity allowed me access to collections in their care. I am also grateful for the many insightful discussions that I have had over the years with fellow researchers of the hand, including (but not limited to) Caley Orr, Matt Tocheri, Biren Patel, Nick Stephens, Erin Marie Williams-Hatala, Mary Marzke, Campbell Rolian, Carol Ward, Sergio Almécija, and especially Pierre Lemelin, Daniel Schmitt and Brian Richmond, whose expertise and constructive comments greatly improved this chapter in particular. This work was funded by the Natural Sciences and Engineering Research Council of Canada, General Motors Women in Science and Mathematics Award, The University of Toronto, The Max Planck Society, and the European Research Council Starting Grant #336301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracy L. Kivell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kivell, T.L. (2016). The Primate Wrist. In: Kivell, T., Lemelin, P., Richmond, B., Schmitt, D. (eds) The Evolution of the Primate Hand. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3646-5_3

Download citation

Publish with us

Policies and ethics