Skip to main content

The Nanoscience of Polyvalent Binding by Proteins in the Immune Response

  • Chapter
  • First Online:
Nanomedicine

Abstract

Recent research has demonstrated that the successful use of nanometer-scaled material, such as nanoparticles, as medicines is often challenged by the host immune system. Mechanisms of the innate immunity seem to provide a swift response to administration of particulate nanomedicines, which may clear or in other way incapacitate the function of these drugs. To rationalize, why and how, the innate immune system especially interacts with nanomedicines, this chapter points to the prominent role of polyvalent interactions by large, immunoactive proteins with the surfaces of nanoparticles. From addressing the thermodynamics and ultrastructural properties of these interactions, it is proposed that the nm-scaled ligand presentation and symmetry on such surfaces is a determinant in the binding of these proteins. Better control over nanomedicine ultrastructure is consequently likely to provide important ways of regulating the interactions, wanted or unwanted, with the innate immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pauling L, Corey RB, Branson HR (1951) The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci U S A 37(4):205–211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Leggio C, Galantini L, Pavel NV (2008) About the albumin structure in solution: cigar expanded form versus heart Normal shape. Phys Chem Chem Phys 10(45):6741–6750. doi:10.1039/b808938h

    Article  PubMed  CAS  Google Scholar 

  3. Howard KA (2015) Albumin: the next-generation delivery technology. Ther Deliv 6(3):265–268. doi:10.4155/tde.14.124

    Article  PubMed  CAS  Google Scholar 

  4. Linderstrøm-Lang KU (1952) Proteins and enzymes. In: Lane medical lectures, vol 6. Stanford University Publications, University Series, Medical Sciences. Stanford University Press, CA. https://books.google.dk/books?id=JUisAAAAIAAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=#v=onepage&q&f=false

  5. Vorup-Jensen T, Boesen T (2011) Protein ultrastructure and the nanoscience of complement activation. Adv Drug Deliv Rev 63(12):1008–1019. doi:10.1016/j.addr.2011.05.023, S0169-409X(11)00145-1 [pii]

    Article  PubMed  CAS  Google Scholar 

  6. Langmuir I (1916) The constitution and fundamental properties of solids and liquids: Part I. Solids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  7. Schuck P (1997) Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu Rev Biophys Biomol Struct 26:541–566. doi:10.1146/annurev.biophys.26.1.541

    Article  PubMed  CAS  Google Scholar 

  8. Karush F (1976) Multivalent binding and functional affinity. Contemp Top Mol Immunol 5:217–228

    Article  PubMed  CAS  Google Scholar 

  9. Burnet FM, Keogh EV, Lusk D (1937) The immunological reactions of filterable viruses. Aust J Exp Biol Med Sci 15:226–368

    Google Scholar 

  10. Vorup-Jensen T (2012) On the roles of polyvalent binding in immune recognition: perspectives in the nanoscience of immunology and the immune response to nanomedicines. Adv Drug Deliv Rev 64(15):1759–1781. doi:10.1016/j.addr.2012.06.003

    Article  PubMed  CAS  Google Scholar 

  11. Mammen M, Choi SK, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37(20):2755–2794

    Article  CAS  Google Scholar 

  12. Kitov PI, Bundle DR (2003) On the nature of the multivalency effect: a thermodynamic model. J Am Chem Soc 125(52):16271–16284. doi:10.1021/ja038223n

    Article  PubMed  CAS  Google Scholar 

  13. Jencks WP (1981) On the attribution and additivity of binding energies. Proc Natl Acad Sci U S A 78(7):4046–4050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jason-Moller L, Murphy M, Bruno J (2006) Overview of Biacore systems and their applications. Curr Protoc Protein Sci. Editorial board, John E. Coligan et al. Chapter 19:Unit 19.13. doi:10.1002/0471140864.ps1913s45

  15. Hunter AC (2009) Application of the quartz crystal microbalance to nanomedicine. J Biomed Nanotechnol 5(6):669–675

    Article  PubMed  CAS  Google Scholar 

  16. Karlsson R, Mo JA, Holmdahl R (1995) Binding of autoreactive mouse anti-type II collagen antibodies derived from the primary and the secondary immune response investigated with the biosensor technique. J Immunol Methods 188(1):63–71

    Article  PubMed  CAS  Google Scholar 

  17. Gjelstrup LC, Kaspersen JD, Behrens MA, Pedersen JS, Thiel S, Kingshott P, Oliveira CL, Thielens NM, Vorup-Jensen T (2012) The role of nanometer-scaled ligand patterns in polyvalent binding by large mannan-binding lectin oligomers. J Immunol 188(3):1292–1306. doi:10.4049/jimmunol.1103012, jimmunol.1103012 [pii]

    Article  PubMed  CAS  Google Scholar 

  18. Svitel J, Balbo A, Mariuzza RA, Gonzales NR, Schuck P (2003) Combined affinity and rate constant distributions of ligand populations from experimental surface binding kinetics and equilibria. Biophys J 84(6):4062–4077. doi:10.1016/S0006-3495(03)75132-7, S0006-3495(03)75132-7 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Vorup-Jensen T (2012) Surface plasmon resonance biosensing in studies of the binding between beta integrin I domains and their ligands. Methods Mol Biol 757:55–71. doi:10.1007/978-1-61779-166-6_5

    Article  PubMed  CAS  Google Scholar 

  20. Vorup-Jensen T, Carman CV, Shimaoka M, Schuck P, Svitel J, Springer TA (2005) Exposure of acidic residues as a danger signal for recognition of fibrinogen and other macromolecules by integrin alphaXbeta2. Proc Natl Acad Sci U S A 102(5):1614–1619. doi:10.1073/pnas.0409057102, 0409057102 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bajic G, Yatime L, Sim RB, Vorup-Jensen T, Andersen GR (2013) Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3. Proc Natl Acad Sci U S A 110(41):16426–16431. doi:10.1073/pnas.1311261110

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gorshkova II, Svitel J, Razjouyan F, Schuck P (2008) Bayesian analysis of heterogeneity in the distribution of binding properties of immobilized surface sites. Langmuir 24(20):11577–11586. doi:10.1021/la801186w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kapinos LE, Schoch RL, Wagner RS, Schleicher KD, Lim RY (2014) Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG nucleoporins. Biophys J 106(8):1751–1762. doi:10.1016/j.bpj.2014.02.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Davis SJ, van der Merwe PA (2006) The kinetic-segregation model: TCR triggering and beyond. Nat Immunol 7(8):803–809. doi:10.1038/ni1369, ni1369 [pii]

    Article  PubMed  CAS  Google Scholar 

  25. Capolunghi F, Rosado MM, Sinibaldi M, Aranburu A, Carsetti R (2013) Why do we need IgM memory B cells? Immunol Lett 152(2):114–120. doi:10.1016/j.imlet.2013.04.007

    Article  PubMed  CAS  Google Scholar 

  26. Feinstein A, Munn EA (1969) Conformation of the free and antigen-bound IgM antibody molecules. Nature 224(5226):1307–1309

    Article  PubMed  CAS  Google Scholar 

  27. Perkins SJ, Nealis AS, Sutton BJ, Feinstein A (1991) Solution structure of human and mouse immunoglobulin M by synchrotron X-ray scattering and molecular graphics modelling. A possible mechanism for complement activation. J Mol Biol 221(4):1345–1366. doi:10.1016/0022-2836(91)90937-2

    Article  PubMed  CAS  Google Scholar 

  28. Czajkowsky DM, Shao Z (2009) The human IgM pentamer is a mushroom-shaped molecule with a flexural bias. Proc Natl Acad Sci U S A 106(35):14960–14965. doi:10.1073/pnas.0903805106, 0903805106 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pedersen MB, Zhou X, Larsen EK, Sorensen US, Kjems J, Nygaard JV, Nyengaard JR, Meyer RL, Boesen T, Vorup-Jensen T (2010) Curvature of synthetic and natural surfaces is an important target feature in classical pathway complement activation. J Immunol 184(4):1931–1945. doi:10.4049/jimmunol.0902214, jimmunol.0902214 [pii]

    Article  PubMed  CAS  Google Scholar 

  30. Foote JB, Mahmoud TI, Vale AM, Kearney JF (2012) Long-term maintenance of polysaccharide-specific antibodies by IgM-secreting cells. J Immunol 188(1):57–67. doi:10.4049/jimmunol.1100783, jimmunol.1100783 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Perkins SJ, Nealis AS, Sim RB (1991) Oligomeric domain structure of human complement factor H by X-ray and neutron solution scattering. Biochemistry 30(11):2847–2857

    Article  PubMed  CAS  Google Scholar 

  32. Holmskov U, Thiel S, Jensenius JC (2003) Collections and ficolins: humoral lectins of the innate immune defense. Annu Rev Immunol 21:547–578. doi:10.1146/annurev.immunol.21.120601.140954, 120601.140954 [pii]

    Article  PubMed  CAS  Google Scholar 

  33. Heesters BA, Myers RC, Carroll MC (2014) Follicular dendritic cells: dynamic antigen libraries. Nat Rev Immunol 14(7):495–504. doi:10.1038/nri3689

    Article  PubMed  CAS  Google Scholar 

  34. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13

    Article  PubMed  CAS  Google Scholar 

  35. Jensenius H, Klein DC, van Hecke M, Oosterkamp TH, Schmidt T, Jensenius JC (2009) Mannan-binding lectin: structure, oligomerization, and flexibility studied by atomic force microscopy. J Mol Biol 391(1):246–259. doi:10.1016/j.jmb.2009.05.083, S0022-2836(09)00677-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  36. Lu JH, Thiel S, Wiedemann H, Timpl R, Reid KB (1990) Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme C1r2C1s2 complex, of the classical pathway of complement, without involvement of C1q. J Immunol 144(6):2287–2294

    PubMed  CAS  Google Scholar 

  37. Dong M, Xu S, Oliveira CL, Pedersen JS, Thiel S, Besenbacher F, Vorup-Jensen T (2007) Conformational changes in mannan-binding lectin bound to ligand surfaces. J Immunol 178(5):3016–3022. doi:10.4049/jimmunol.178.5.3016

    Article  PubMed  CAS  Google Scholar 

  38. Gjelstrup LC, Boesen T, Kragstrup TW, Jorgensen A, Klein NJ, Thiel S, Deleuran BW, Vorup-Jensen T (2010) Shedding of large functionally active CD11/CD18 Integrin complexes from leukocyte membranes during synovial inflammation distinguishes three types of arthritis through differential epitope exposure. J Immunol 185(7):4154–4168. doi:10.4049/jimmunol.1000952, jimmunol.1000952 [pii]

    Article  PubMed  CAS  Google Scholar 

  39. Degn SE, Thiel S (2013) Humoral pattern recognition and the complement system. Scand J Immunol 78(2):181–193. doi:10.1111/sji.12070

    Article  PubMed  CAS  Google Scholar 

  40. Degn SE, Kjaer TR, Kidmose RT, Jensen L, Hansen AG, Tekin M, Jensenius JC, Andersen GR, Thiel S (2014) Complement activation by ligand-driven juxtaposition of discrete pattern recognition complexes. Proc Natl Acad Sci U S A 111(37):13445–13450. doi:10.1073/pnas.1406849111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Touhami A, Jericho MH, Beveridge TJ (2004) Atomic force microscopy of cell growth and division in Staphylococcus aureus. J Bacteriol 186(11):3286–3295. doi:10.1128/JB.186.11.3286-3295.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Weis WI, Drickamer K (1994) Trimeric structure of a C-type mannose-binding protein. Structure 2(12):1227–1240

    Article  PubMed  CAS  Google Scholar 

  43. Sheriff S, Chang CY, Ezekowitz RA (1994) Human mannose-binding protein carbohydrate recognition domain trimerizes through a triple alpha-helical coiled-coil. Nat Struct Biol 1(11):789–794

    Article  PubMed  CAS  Google Scholar 

  44. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA (1999) Phylogenetic perspectives in innate immunity. Science 284(5418):1313–1318

    Article  PubMed  CAS  Google Scholar 

  45. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458(7242):1191–1195. doi:10.1038/nature07830, nature07830 [pii]

    Article  PubMed  CAS  Google Scholar 

  46. Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, Wilson IA (2012) Structural basis of TLR5-flagellin recognition and signaling. Science 335(6070):859–864. doi:10.1126/science.1215584, 335/6070/859 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Dufrene YF (2014) Atomic force microscopy in microbiology: new structural and functional insights into the microbial cell surface. MBio 5(4):e01363–e01314. doi:10.1128/mBio.01363-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Feynman R (1960) There’s plenty of room at the bottom. Eng Sci 23(23):22–36

    Google Scholar 

  49. Vorup-Jensen T (2012) Wrong resemblance? Role of the immune system in biocompatibility of nanostructured materials. In: Peer D (ed) Handbook of harnessing biomaterials in nanomedicine. Pan Stanford Publishing, Singapore, pp 283–301

    Chapter  Google Scholar 

  50. Guerreiro AR, Chianella I, Piletska E, Whitcombe MJ, Piletsky SA (2009) Selection of imprinted nanoparticles by affinity chromatography. Biosens Bioelectron 24(8):2740–2743. doi:10.1016/j.bios.2009.01.013

    Article  PubMed  CAS  Google Scholar 

  51. Larsen EK, Nielsen T, Wittenborn T, Birkedal H, Vorup-Jensen T, Jakobsen MH, Ostergaard L, Horsman MR, Besenbacher F, Howard KA, Kjems J (2009) Size-dependent accumulation of PEGylated silane-coated magnetic iron oxide nanoparticles in murine tumors. ACS Nano 3(7):1947–1951. doi:10.1021/nn900330m

    Article  PubMed  CAS  Google Scholar 

  52. Bernd H, De Kerviler E, Gaillard S, Bonnemain B (2009) Safety and tolerability of ultrasmall superparamagnetic iron oxide contrast agent: comprehensive analysis of a clinical development program. Invest Radiol 44(6):336–342. doi:10.1097/RLI.0b013e3181a0068b

    Article  PubMed  CAS  Google Scholar 

  53. Klein JS, Bjorkman PJ (2010) Few and far between: how HIV may be evading antibody avidity. PLoS Pathog 6(5):e1000908. doi:10.1371/journal.ppat.1000908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Moghimi SM, Andersen AJ, Ahmadvand D, Wibroe PP, Andresen TL, Hunter AC (2011) Material properties in complement activation. Adv Drug Deliv Rev 63(12):1000–1007. doi:10.1016/j.addr.2011.06.002, S0169-409X(11)00147-5 [pii]

    Article  PubMed  CAS  Google Scholar 

  55. Liu Y, Yin Y, Wang L, Zhang W, Chen X, Yang X, Xu J, Ma G (2013) Engineering biomaterial-associated complement activation to improve vaccine efficacy. Biomacromolecules 14(9):3321–3328. doi:10.1021/bm400930k

    Article  PubMed  CAS  Google Scholar 

  56. Tokura S, Tamura H, Azuma I (1999) Immunological aspects of chitin and chitin derivatives administered to animals. EXS 87:279–292

    PubMed  CAS  Google Scholar 

  57. Barreto-Bergter E, Figueiredo RT (2014) Fungal glycans and the innate immune recognition. Front Cell Infect Microbiol 4:145. doi:10.3389/fcimb.2014.00145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Robyt JF, Yoon SH, Mukerjea R (2008) Dextransucrase and the mechanism for dextran biosynthesis. Carbohydr Res 343(18):3039–3048. doi:10.1016/j.carres.2008.09.012

    Article  PubMed  CAS  Google Scholar 

  59. Andersen AJ, Robinson JT, Dai H, Hunter AC, Andresen TL, Moghimi SM (2013) Single-walled carbon nanotube surface control of complement recognition and activation. ACS Nano 7(2):1108–1119. doi:10.1021/nn3055175

    Article  PubMed  CAS  Google Scholar 

  60. Moghimi SM, Hunter AC, Andresen TL (2012) Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol Toxicol 52:481–503. doi:10.1146/annurev-pharmtox-010611-134623

    Article  PubMed  CAS  Google Scholar 

  61. Szebeni J, Muggia F, Gabizon A, Barenholz Y (2011) Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv Drug Deliv Rev 63(12):1020–1030. doi:10.1016/j.addr.2011.06.017, S0169-409X(11)00194-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  62. Roux KH (1999) Immunoglobulin structure and function as revealed by electron microscopy. Int Arch Allergy Immunol 120(2):85–99. doi:10.1159/000024226

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This paper summarizes ideas presented earlier as part of a public defense on September 5th 2014 for the degree of Doctor Medical Science awarded to TV-J. I would like to thank the official opponents on that occasion, Prof. Søren Buus, University of Copenhagen, Dr. A. Christy Hunter, Manchester Pharmacy School, and Prof. Kristian Stengaard-Pedersen, Aarhus University, for their helpful discussion and contributions to developing my thoughts on this topic. Our original papers were made with generous financial support from The Danish Multiple Sclerosis Association, The Danish Rheumatism Association, The Carlsberg Foundation, The Novo Nordisk Foundation, The Lundbeck Foundation, The LEO Pharma Research Foundation, The Danish Council for Independent Research|Medical Sciences, and The Danish Council for Independent Research| Natural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Vorup-Jensen M.Sc., Ph.D., D.M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Controlled Release Society

About this chapter

Cite this chapter

Vorup-Jensen, T. (2016). The Nanoscience of Polyvalent Binding by Proteins in the Immune Response. In: Howard, K., Vorup-Jensen, T., Peer, D. (eds) Nanomedicine. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3634-2_4

Download citation

Publish with us

Policies and ethics