Skip to main content

Visualizing and Analyzing Branching Microtubule Nucleation Using Meiotic Xenopus Egg Extracts and TIRF Microscopy

  • Protocol
  • First Online:
The Mitotic Spindle

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1413))

Abstract

Mitotic and meiotic spindles consist primarily of microtubules, which originate from centrosomes and within the vicinity of chromatin. Indirect evidence suggested that microtubules also originate throughout the spindle, but the high microtubule density within the spindle precludes the direct observation of this phenomenon. By using meiotic Xenopus laevis egg extract and employing total internal reflection (TIRF) microscopy, microtubule nucleation from preexisting microtubules could be demonstrated and analyzed. Branching microtubule nucleation is an ideal mechanism to assemble and maintain a mitotic spindle, because microtubule numbers are amplified while preserving their polarity. Here, we describe the assays that made these findings possible and the experiments that helped identify the key molecular players involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lajoie-Mazenc I, Tollon Y, Detraves C, Julian M, Moisand A, Gueth-Hallonet C, Debec A, Salles-Passador I, Puget A, Mazarguil H et al (1994) Recruitment of antigenic gamma-tubulin during mitosis in animal cells: presence of gamma-tubulin in the mitotic spindle. J Cell Sci 107(Pt 10):2825–2837

    CAS  PubMed  Google Scholar 

  2. Mahoney NM, Goshima G, Douglass AD, Vale RD (2006) Making microtubule sand mitotic spindles in cells without functional centrosomes. Curr Biol 16:564–569

    Article  CAS  PubMed  Google Scholar 

  3. Brugues J, Nuzzo V, Mazur E, Needleman DJ (2012) Nucleation and transport organize microtubules in metaphase spindles. Cell 149:554–564

    Article  CAS  PubMed  Google Scholar 

  4. Loughlin R, Heald R, Nedelec F (2010) A computational model predicts Xenopus meiotic spindle organization. J Cell Biol 191:1239–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goshima G, Wollman R, Goodwin SS, Zhang N, Scholey JM, Vale RD, Stuurman N (2007) Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316:417–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goshima G, Mayer M, Zhang N, Stuurman N, Vale RD (2008) Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J Cell Biol 181:421–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Uehara R, Nozawa RS, Tomioka A, Petry S, Vale RD, Obuse C, Goshima G (2009) The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells. Proc Natl Acad Sci U S A 106:6998–7003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lawo S, Bashkurov M, Mullin M, Ferreria MG, Kittler R, Habermann B, Tagliaferro A, Poser I, Hutchins JR, Hegemann B, Pinchev D, Buchholz F, Peters JM, Hyman AA, Gingras AC, Pelletier L (2009) HAUS, the 8-subunit human Augmin complex, regulates centrosome and spindle integrity. Curr Biol 19:816–826

    Article  CAS  PubMed  Google Scholar 

  9. Petry S, Groen AC, Ishihara K, Mitchison TJ, Vale RD (2013) Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 152:768–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Castoldi M, Popov AV (2003) Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr Purif 32:83–88

    Article  CAS  PubMed  Google Scholar 

  11. Hyman AA (1991) Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence. J Cell Sci Suppl 14:125–127

    Article  CAS  PubMed  Google Scholar 

  12. Gell C, Bormuth V, Brouhard GJ, Cohen DN, Diez S, Friel CT, Helenius J, Nitzsche B, Petzold H, Ribbe J, Schaffer E, Stear JH, Trushko A, Varga V, Widlund PO, Zanic M, Howard J (2010) Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. Methods Cell Biol 95:221–245

    Article  CAS  PubMed  Google Scholar 

  13. Aitken CE, Marshall RA, Puglisi JD (2008) An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94:1826–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Petry S, Pugieux C, Nedelec FJ, Vale RD (2011) Augmin promotes meiotic spindle formation and bipolarity in Xenopus egg extracts. Proc Natl Acad Sci U S A 108:14473–14478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kalab P, Weis K, Heald R (2002) Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295:2452–2456

    Article  CAS  PubMed  Google Scholar 

  16. Groen AC, Maresca TJ, Gatlin JC, Salmon ED, Mitchison TJ (2009) Functional overlap of microtubule assembly factors in chromatin-promoted spindle assembly. Mol Biol Cell 20:2766–2773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Albee AJ, Wiese C (2008) Xenopus TACC3/maskin is not required for microtubule stability but is required for anchoring microtubules at the centrosome. Mol Biol Cell 19:3347–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Murray AW (1991) Cell cycle extracts. Methods Cell Biol 36:581–605

    Article  CAS  PubMed  Google Scholar 

  19. Hannak E, Heald R (2006) Investigating mitotic spindle assembly and function in vitro using Xenopus laevis egg extracts. Nat Protoc 1:2305–2314

    Article  CAS  PubMed  Google Scholar 

  20. Desai A, Murray A, Mitchison TJ, Walczak CE (1999) The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro. Methods Cell Biol 61:385–412

    Article  CAS  PubMed  Google Scholar 

  21. Edelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD, Stuurman N (2014) Advanced methods of microscope control using muManager software. J Biol Methods 1(2), pii: e10

    Google Scholar 

  22. Rasband WS (1997/2014) ImageJ, U.S. National Institutes of Health, Bethesda, MD, USA, http://imagej.nih.gov/ij/

Download references

Acknowledgements

This work was supported by grants from the NIH/NIGMS (4R00GM100013), the Pew Scholars Program in the Biomedical Sciences, the Sidney Kimmel Foundation, and the David and Lucile Packard Foundation to S.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Petry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

King, M., Petry, S. (2016). Visualizing and Analyzing Branching Microtubule Nucleation Using Meiotic Xenopus Egg Extracts and TIRF Microscopy. In: Chang, P., Ohi, R. (eds) The Mitotic Spindle. Methods in Molecular Biology, vol 1413. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3542-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3542-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3540-6

  • Online ISBN: 978-1-4939-3542-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics