Skip to main content

To Scream or to Listen? Prey Detection and Discrimination in Animal-Eating Bats

  • Chapter
  • First Online:
Bat Bioacoustics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 54))

Abstract

All animal-eating bats are echolocators, and the vast majority can capture airborne prey (aerial hawking). The literature suggests that >40 % of these same species also take prey from surfaces (substrate gleaning). Innovations in acoustic recording have revealed bats’ high-frequency vocalizations and showed that hawking bats produce calls of greater intensity than calls produced by gleaning bats. In response to bat echolocation calls, many eared insects initiate evasive action, and some tiger moths produce sounds that deter a bat from completing an aerial attack. Bats abort their hawking attacks as a result of having had their echolocation interfered with by the moths’ sounds, by having had previous experience that taught them moths that make sounds tasted bad, or through some combination of the two. Among gleaning bats, the fringe-lipped bat has been well studied with respect to foraging. This bat uses the sexual advertisement calls of male frogs to localize them. Male frogs that produce calls with more complexity are more attractive to female frogs, but are more easily localized by fringe-lipped bats. It had been argued that gleaning bats are unable to locate perched or otherwise substrate-borne prey using echolocation. This is because background echoes were assumed to mask those reflected from prey. Gleaners were believed, instead, to use prey-generated sounds for detection and localization. It is now known that at least one species of bat is able to resolve echoes reflected from large insect prey from the echoes reflected from the vegetation on which the insect is perched.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arlettaz, R. (1996). Feeding behaviour and foraging strategy of free-living mouse-eared bats, Myotis myotis and Myotis blythii. Animal Behaviour, 51(1), 1–11.

    Article  Google Scholar 

  • Arlettaz, R., Jones, G., & Racey, P. A. (2001). Effect of acoustic clutter on prey detection by bats. Nature, 414(6865), 742–745. doi:10.1038/414742a

    Article  CAS  PubMed  Google Scholar 

  • Barber, J. R., & Conner, W. E. (2007). Acoustic mimicry in a predator prey interaction. Proceedings of the National Academy of Sciences of the USA, 104(22), 9331–9334. doi:10.1073/pnas.0703627104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber, J. R., Razak, K. A., & Fuzessery, Z. M. (2003). Can two streams of auditory information be processed simultaneously? Evidence from the gleaning bat Antrozous pallidus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 189(11), 843–855. doi:10.1007/s00359-003-0463-6

    Article  CAS  PubMed  Google Scholar 

  • Barber, J. R., Chadwell, B. A., Garrett, N., Schmidt-French, B., & Conner, W. E. (2009). Naïve bats discriminate arctiid moth warning sounds but generalize their aposematic meaning. Journal of Experimental Biology, 212(14), 2141–2148. doi:10.1242/jeb.029991

    Article  PubMed  Google Scholar 

  • Barclay R. M. R., Fenton M. B., Tuttle M. D., & Ryan M. J. (1981). Echolocation calls produced by Trachops cirrhosus (Chiroptera: Phyllostomatidae) while hunting for frogs. Canadian Journal of Zoology, 59, 750–753. doi:10.1139/z81-107

    Article  Google Scholar 

  • Baron, G., Stephan, H., & Frahm, H. D. (1996). Comparative neurobiology in Chiroptera. Basel: Birkhäuser.

    Google Scholar 

  • Bates, D. L., & Fenton, M. B. (1990). Aposematism or startle? Predators learn their responses to the defenses of prey. Canadian Journal of Zoology, 68(1), 49–52. doi:10.1139/z90-009

    Article  Google Scholar 

  • Bell, G. (1982). Behavioral and ecological aspects of gleaning by a desert insectivorous bat Antrozous pallidus (Chiroptera: Vespertilionidae). Behavioral Ecology and Sociobiology, 10(3), 217–223.

    Article  Google Scholar 

  • Bell, G. (1985). The sensory basis of prey location by the California leaf-nosed bat Macrotus californicus (Chiroptera: Phyllostomidae). Behavioral Ecology and Sociobiology, 16, 343–347.

    Article  Google Scholar 

  • Belwood, J., & Morris, G. (1987). Bat predation and its influence on calling behavior inneotropical katydids. Science, 238(4823), 64.

    Article  CAS  PubMed  Google Scholar 

  • Bernal, X. E., Page, R. A., Rand, A. S., & Ryan, M. J. (2007). Cues for eavesdroppers: Do frog calls indicate prey density and quality? American Naturalist, 169(3), 409–415. doi:10.1086/510729

    Article  PubMed  Google Scholar 

  • Blest, A. D., Collett, T. S., & Pye, J. D. (1963). The generation of ultrasonic signals by a New World arctiid moth. Proceedings of the Royal Society of London B: Biological Sciences, 158(971), 196–207. doi:10.1098/rspb.1963.0042

    Article  Google Scholar 

  • Boul, K. E., & Ryan, M. J. (2004). Population variation of complex advertisement calls in Physalaemus petersi and comparative laryngeal morphology. Copeia, 3, 624–631. doi:10.1643/CH-03-153R2

    Article  Google Scholar 

  • Bruns, V., & Burda, H. (1989). Ear morphology of the frog-eating bat (Trachops cirrhosus, family: Phyllostomidae): Apparent specializations for low-frequency hearing. Journal of Morphology, 199, 103–118.

    Article  Google Scholar 

  • Clare, E. L., Fraser, E. E., Braid, H. E., Fenton, M. B., & Hebert, P. D. N. (2009). Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): Using a molecular approach to detect arthropod prey. Molecular Ecology, 18(11), 2532–2542.

    Article  PubMed  Google Scholar 

  • Conner, W. E. (1999). ‘Un chant d’appel amoureux’: Acoustic communication in moths. Journal of Experimental Biology, 202, 1711–1723.

    PubMed  Google Scholar 

  • Corcoran, A. J., & Conner, W. E. (2012). Sonar jamming in the field: Effectiveness and behavior of a unique prey defense. Journal of Experimental Biology, 215, 4278–4287. doi:10.1242/jeb.076943

    Article  PubMed  Google Scholar 

  • Corcoran, A. J., Barber, J. R., & Conner, W. E. (2009). Tiger moth jams bat sonar. Science, 325(5938), 325–327. doi:10.1126/science.1174096

    Article  CAS  PubMed  Google Scholar 

  • Dijkgraaf, S. (1943). Over een merkwaardige functie van den gehoorsin bij vleermuizen. Verslagen Nederlandische Akademie van Wetenschappen Afd. Naturkunde, 52, 622–627.

    Google Scholar 

  • Dijkgraaf, S. (1946) Die sinneswelt der fledermäuse. Experientia, 2, 438–448.

    Google Scholar 

  • Dunning, D. C. (1968). Warning sounds of moths. Zeitschrift für Tierpsychologie, 25(2), 129–138.

    CAS  PubMed  Google Scholar 

  • Dunning, D. C., Acharya, L., Merriman, C. B., & Ferro, L. D. (1992). Interactions between bats and arctiid moths. Canadian Journal of Zoology, 70(11), 2218–2223. doi:10.1139/z92-298

    Article  Google Scholar 

  • Elemans, C. P. H., Mead, A. F., Jakobsen, L., & Ratcliffe, J. M. (2011). Superfast muscles set maximum call rate in echolocating bats. Science, 333(6051), 1885–1888. doi:10.1126/science.1207309

    Article  CAS  PubMed  Google Scholar 

  • Falk, J. J., ter Hofstede, H. M., Jones, P. L., Dixon, M. M., Faure, P. A., Kalko, E. K. V., & Page, R. A. (2015). Sensory-based niche partitioning in a multiple predator–multiple prey community. Proceedings of the Royal Society of London B: Biological Sciences, 282(1808), 20150520. doi: 10.1098/rspb.2015.0520

    Article  Google Scholar 

  • Faure, P., & Barclay, R. (1994). Substrate-gleaning versus aerial-hawking: Plasticity in the foraging and echolocation behaviour of the long-eared bat, Myotis evotis. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 174, 651–660.

    Article  CAS  Google Scholar 

  • Fenton, M. B. (1990). The foraging behaviour and ecology of animal-eating bats. Canadian Journal of Zoology, 68(3), 411–422.

    Article  Google Scholar 

  • Fenton, M. B., & Ratcliffe, J. M. (2010). Bats. Current Biology, 20, R1060-R1062.

    Google Scholar 

  • Fenton, M., Audet, D., Orbrist, M. K., & Rydell, J. (1995). Signal strength, timing, and self-deafening: The evolution of echolocation in bats. Paleobiology, 21(2), 229–242.

    Google Scholar 

  • Fugère, V., O’Mara, T. M., & Page, R.A. (2015). Perceptual bias does not explain preference for prey call adornment in the frog-eating bat. Behavioral Ecology and Sociobiology, doi: 10.1007/s00265-015-1949-2

    Google Scholar 

  • Fullard, J. H. (1998). The sensory coevolution of moths and bats. In R. R. Hoy, A. N. Popper, & R. R. Fay (Eds), Comparative hearing: Insects (pp. 279–326). New York: Springer. doi:10.1007/978-1-4612-0585-2_8

    Chapter  Google Scholar 

  • Fullard, J. H., & Fenton, M. (1977). Acoustic and behavioural analyses of the sounds produced by some species of Nearctic Arctiidae (Lepidoptera). Canadian Journal of Zoology, 55(8), 1213–1224. doi:10.1139/z77-160

    Article  Google Scholar 

  • Fullard, J. H., Fenton, M. B., & Simmons, J. A. (1979). Jamming bat echolocation: The clicks of arctiid moths. Canadian Journal of Zoology, 57(3), 647–649. doi:10.1139/z79-076

    Article  Google Scholar 

  • Fullard, J. H., Ratcliffe, J. M., & Guignion, C. (2005). Sensory ecology of predator–prey interactions: Responses of the AN2 interneuron in the field cricket, Teleogryllus oceanicus to the echolocation calls of sympatric bats. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 191(7), 605–618.

    Article  PubMed  Google Scholar 

  • Fullard, J. H., Ratcliffe, J. M., & Christie, C. G. (2007). Acoustic feature recognition in the dogbane tiger moth, Cycnia tenera. Journal of Experimental Biology, 210(14), 2481–2488. doi:10.1242/jeb.001909

    Article  PubMed  Google Scholar 

  • Geipel, I., Jung, K., & Kalko, E. K. V. (2013a). Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis. Proceedings of the Royal Society of London B: Biological Sciences, 280(1754), 20122830. doi:10.1098/rspb.2012.2830

    Google Scholar 

  • Geipel, I., Kalko, E. K. V., Wallmeyer, K., & Knörnschild, M. (2013b). Postweaning maternal food provisioning in a bat with a complex hunting strategy. Animal Behaviour, 85, 1435–1441.

    Google Scholar 

  • Ghose, K., Horiuchi, T. K., Krishnaprasad, P. S., & Moss, C. F. (2006). Echolocating bats use a nearly time-optimal strategy to intercept prey. PLoS Biology, 4(5), e108. doi:10.1371/journal.pbio.0040108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goerlitz, H. R., & Siemers, B. M. (2006). Sensory ecology of prey rustling sounds: Acoustical features and their classification by wild grey mouse lemurs. Functional Ecology, 21, 143–153.

    Google Scholar 

  • Goerlitz, H. R., Greif, S., & Siemers, B. M. (2008). Cues for acoustic detection of prey: Insect rustling sounds and the influence of walking substrate. Journal of Experimental Biology, 211(17), 2799–2806.

    Article  PubMed  Google Scholar 

  • Goerlitz, H. R., ter Hofstede, H. M., Zeale, M. R. K., Jones, G., & Holderied, M. W. (2010). An aerial-hawking bat uses stealth echolocation to counter moth hearing. Current Biology, 20(17), 1568–1572.

    Google Scholar 

  • Griffin, D. R. (1944). How bats guide their flight by supersonic echoes. American Journal of Physics, 12(6), 342–345. doi: 10.1119/1.1990634

    Article  Google Scholar 

  • Griffin, D. R. (1958). Listening in the dark: The acoustic orientation of bats and men. New Haven, CT: Yale University Press.

    Google Scholar 

  • Griffin, D. R., Webster, F. A., & Michael, C. R. (1960). The echolocation of flying insects by bats. Animal Behaviour, 111, 141–154.

    Article  Google Scholar 

  • Hackett, T. D., Korine, C., & Holderied, M. W. (2014). A whispering bat that screams: Bimodal switch of foraging guild from gleaning to aerial hawking in the desert long-eared bat. Journal of Experimental Biology, 217(17), 3028–3032. doi:10.1242/u200Bjeb.100362

    Article  PubMed  Google Scholar 

  • Halfwerk, W., Jones, P. L., Taylor, R. C., Ryan, M. J., & Page, R. A. (2014). Risky ripples allow bats and frogs to eavesdrop on a multisensory sexual display. Science, 343(6169), 413–416. doi:10.1126/science.1244812

    Article  CAS  PubMed  Google Scholar 

  • Holderied, M. W., & von Helversen, O. (2003). Echolocation range and wingbeat period match in aerial-hawking bats. Proceedings of the Royal Society of London B: Biological Sciences, 270(1530), 2293–2299.

    Article  CAS  Google Scholar 

  • Holderied, M. W., Korine, C., Fenton, M. B., Parsons, S., Robson, S., & Jones, G. (2005). Echolocation call intensity in the aerial hawking bat Eptesicus bottae (Vespertilionidae) studied using stereo videogrammetry. Journal of Experimental Biology, 208(7), 1321–1327.

    Article  PubMed  Google Scholar 

  • Hoy, R. R. (1992). The evolution of hearing in insects as an adaptation to predation from bats. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds), The evolutionary biology of hearing (pp. 115–129). New York: Springer.

    Chapter  Google Scholar 

  • Hristov, N. I., & Conner, W. E. (2005). Sound strategy: Acoustic aposematism in the bat–tiger moth arms race. Naturwissenschaften, 92(4), 164–169.

    Article  CAS  PubMed  Google Scholar 

  • Hulgard, K., & Ratcliffe, J. M. (2014). Niche-specific cognitive strategies: Object memory interferes with spatial memory in the predatory bat, Myotis nattereri. Journal of Experimental Biology, 217, 3293–3300.

    Article  PubMed  Google Scholar 

  • Jakobsen, L., & Surlykke, A. (2010). Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit. Proceedings of the National Academy of Sciences of the USA, 107(31), 13930–13935. doi:10.1073/pnas.1006630107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsen, L., Ratcliffe, J. M., & Surlykke, A. (2013). Convergent acoustic field of view in echolocating bats. Nature, 493, 93–96. doi:10.1038/nature11664

    Article  PubMed  CAS  Google Scholar 

  • Jones, G., & Teeling, E. C. (2006). The evolution of echolocation in bats. Trends in Ecology and Evolution, 21(3), 149–156. doi:10.1016/j.tree.2006.01.001

    Article  PubMed  Google Scholar 

  • Jones, G., Webb, P. I., Sedgeley, J. A., & O’Donnell, C. F. J. (2003). Mysterious Mystacina: How the New Zealand short-tailed bat (Mystacina tuberculata) locates insect prey. Journal of Experimental Biology, 206, 4209–4216.

    Article  PubMed  Google Scholar 

  • Jones, P., Page, R., Hartbauer, M., & Siemers, B. M. (2011). Behavioral evidence for eavesdropping on prey song in two Palearctic sibling bat species. Behavioral Ecology and Sociobiology, 65, 333–340.

    Article  Google Scholar 

  • Jones, P., Ryan, M., & Page, R. (2014). Population and seasonal variation in response to prey calls by an eavesdropping bat. Behavioral Ecology and Sociobiology, 608, 605–615. doi:10.1007/s00265-013-1675-6

    Article  Google Scholar 

  • Jones, P. L., Ryan, M. J., Flores, V., & Page, R. A. (2013). When to approach novel prey cues? Social learning strategies in frog-eating bats. Proceedings of the Royal Society of London B: Biological Sciences, 280(1772), 20132330. doi:10.1098/rspb.2010.1562

    Article  Google Scholar 

  • Kalko, E. K. V., & Schnitzler, H.-U. (1989). The echolocation and hunting behavior of Daubenton’s bat, Myotis daubentoni. Behavioral Ecology and Sociobiology, 24(4), 225–238. doi:10.1007/BF00295202

    Article  Google Scholar 

  • Karlson, P., & Lüscher, M. (1959). “Pheromones”: A new term for a class of biologically active substances. Nature, 183(4653), 55–56. doi:10.1038/183055a0

    Article  CAS  PubMed  Google Scholar 

  • Kick, S. A., & Simmons, J. A. (1984). Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation. Journal of Neuroscience, 4(11), 2725–2737.

    CAS  PubMed  Google Scholar 

  • Korsunovskaya, O. (2008). Acoustic signals in katydids (Orthoptera, Tettigonidae). Entomological Review, 88(9), 1032–1050.

    Article  Google Scholar 

  • Miller, L. (1991). Arctiid moth clicks can degrade the accuracy of range difference discrimination in echolocating big brown bats, Eptesicus fuscus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 168, 571–579.

    Article  CAS  Google Scholar 

  • Miller, L. A., & Surlykke, A. (2001). How some insects detect and avoid being eaten by bats: Tactics and countertactics of prey and predator. BioScience, 51, 571–582.

    Article  Google Scholar 

  • Nagel, T. (1974). What is it like to be a bat? Philosophical Review, 83(4), 435–450.

    Article  Google Scholar 

  • Neuweiler, G. (1989). Foraging ecology and audition in echolocating bats. Trends in Ecology and Evolution, 4(6), 160–166. doi:10.1016/0169-5347(89)90120-1

    Article  CAS  PubMed  Google Scholar 

  • Norberg, U. M., & Rayner, J. (1987). Ecological morphology and flight in bats (Mammalia; Chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society B, 316(1179), 335–427.

    Article  Google Scholar 

  • Page, R. A., & Ryan, M. J. (2005). Flexibility in assessment of prey cues: Frog-eating bats and frog calls. Proceedings of the Royal Society of London B: Biological Sciences, 272(1565), 841–847. doi:10.1098/rspb.2004.2998

    Article  Google Scholar 

  • Page, R. A., & Ryan, M. J. (2006). Social transmission of novel foraging behavior in bats: Frog calls and their referents. Current Biology, 16, 1201–1205.

    Article  CAS  PubMed  Google Scholar 

  • Page, R. A., & Ryan, M. J. (2008). The effect of signal complexity on localization performance in bats that localize frog calls. Animal Behaviour, 76(3), 761–769.

    Article  Google Scholar 

  • Page, R. A., Schnelle, T., Kalko, E. K. V., Bunge, T., & Bernal, X. E. (2012). Sequential assessment of prey through the use of multiple sensory cues by an eavesdropping bat. Naturwissenschaften, 99(6), 505–509. doi:10.1007/s00114-012-0920-6

    Article  CAS  PubMed  Google Scholar 

  • Peake, T. M. (2005). Eavesdropping in communication networks. In P. K. McGregor (Ed.), Animal communication networks (pp. 13–37). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Phelps, S. M., & Ryan, M. J. (1998). Neural networks predict response biases of female túngara frogs. Proceedings of the Royal Society of London B: Biological Sciences, 265(1393), 279–285.

    Article  CAS  Google Scholar 

  • Ratcliffe, J. M. (2009). Predator-prey interaction in an auditory world. In R. Dukas, & J. M. Ratcliffe, Cognitive ecology II (pp. 201–225). Chicago: University of Chicago Press.

    Chapter  Google Scholar 

  • Ratcliffe, J. M., & Dawson, J. W. (2003). Behavioural flexibility: The little brown bat, Myotis lucifugus, and the northern long-eared bat, M. septentrionalis, both glean and hawk prey. Animal Behaviour, 66, 847–856.

    Article  Google Scholar 

  • Ratcliffe, J. M., & Fullard, J. H. (2005). The adaptive function of tiger moth clicks against echolocating bats: An experimental and synthetic approach. Journal of Experimental Biology, 208, 4689–4698.

    Article  PubMed  Google Scholar 

  • Ratcliffe, J. M., Raghuram, H., Marimuthu, G., Fullard, J. H., & Fenton, M. B. (2005). Hunting in unfamiliar space: Echolocation in the Indian false vampire bat, Megaderma lyra, when gleaning prey. Behavioral Ecology and Sociobiology, 58, 157–164.

    Article  Google Scholar 

  • Ratcliffe, J. M., Fenton, M. B., & Shettleworth, S. J. (2006). Behavioral flexibility positively correlated with relative brain volume in predatory bats. Brain, Behavior and Evolution, 67(3), 165–176. doi:10.1159/000090980

    Article  PubMed  Google Scholar 

  • Ratcliffe, J. M., Fullard, J. H., Arthur, B. J., & Hoy, R. R. (2009). Tiger moths and the threat of bats: Decision-making based on the activity of a single sensory neuron. Biology Letters, 5, 368–371.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratcliffe, J. M., Fullard, J. H., Arthur, B. J., & Hoy, R. R. (2011). Adaptive auditory risk assessment in the dogbane tiger moth when pursued by bats. Proceedings of the Royal Society of London B: Biological Sciences, 278, 364–370.

    Google Scholar 

  • Ratcliffe, J. M., Elemans, C. P. H., Jakobsen, L., & Surlykke, A. (2013). How the bat got its buzz. Biology Letters, 9(2), 1–5.

    Article  Google Scholar 

  • Reep, R. L., & Bhatnagar, K. P. (2000). Brain ontogeny and ecomorphology in bats. In R. A. Adams, & S. C. Pedersen (Eds), Ontogeny, functional ecology, and evolution of bats (pp. 93–136). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Roeder, K. D. (1967). Nerve cells and insect behavior. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Rome, L. C. (2006). Design and function of superfast muscles: New insights into the physiology of skeletal muscle. Annual Review of Physiology, 68, 193–221.

    Article  CAS  PubMed  Google Scholar 

  • Ron, S. R. (2008). The evolution of female mate choice for complex calls in túngara frogs. Animal Behaviour, 76, 1783–1794.

    Article  Google Scholar 

  • Rothschild, M., Reichstein, T., Euw, J. von, Aplin, R., & Harman, R. R. M. (1970). Toxic lepidoptera. Toxicon, 8(4), 293–296. doi:10.1016/0041-0101(70)90006-1

    Google Scholar 

  • Russo, D., Jones, G., & Arlettaz, R. (2007). Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M. blythii. Journal of Experimental Biology, 210(1), 166–176. doi:10.1242/jeb.02644

    Article  PubMed  Google Scholar 

  • Ryan, M. J. (1980). Female mate choice in a neotropical frog. Science, 209(4455), 523–525.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, M. J. (1985). The túngara frog: A study in sexual selection and communication. Chicago: University of Chicago Press.

    Google Scholar 

  • Ryan, M. J., & Tuttle, M. D. (1982). Bat predation and sexual advertisement in a neotropical anuran. American Naturalist, 119(1), 136–139.

    Article  Google Scholar 

  • Ryan, M. J., & Tuttle, M. D. (1983). The ability of the frog-eating bat to discriminate among novel and potentially poisonous frog species using acoustic cues. Animal Behaviour, 31, 827–833.

    Article  Google Scholar 

  • Ryan, M. J., & Tuttle, M. D. (1987). The role of prey-generated sounds, vision, and echolocation in prey localization by the African bat Cardioderma cor (Megadermatidae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 161(1), 59–66.

    Article  Google Scholar 

  • Ryan, M. J., Fox, J. H., Wilczynski, W., & Rand, A. S. (1990). Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature, 343(6253), 66–67. doi:10.1038/343066a0

    Article  CAS  PubMed  Google Scholar 

  • Safi, K., Seid, M. A., & Dechmann, D. K. N. (2005). Bigger is not always better: When brains get smaller. Biology Letters, 1(3), 283–286. doi:10.1098/rsbl.2005.0333

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaub, A., Ostwald, J., & Siemers, B. M. (2008). Foraging bats avoid noise. Journal of Experimental Biology, 211(19), 3174–3180. doi:10.1242/jeb.022863

    Article  PubMed  Google Scholar 

  • Schmidt, S., Hanke, S., & Pillat, J. (2000). The role of echolocation in the hunting of terrestrial prey – new evidence for an underestimated strategy in the gleaning bat, Megaderma lyra. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 186(10), 975–988. doi:10.1007/s003590000151

    Article  CAS  Google Scholar 

  • Schnitzler, H.-U., & Kalko, E. K. V. (1998). How echolocating bats search and find food. In T. H. Kunz, & P. A. Racey (Eds), Bat biology and conservation (pp. 183–196). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Schnitzler, H.-U., & Kalko, E. K. V. (2001). Echolocation by insect-eating bats. BioScience, 51(7), 557- 569.

    Article  Google Scholar 

  • Schnitzler, H.-U., Moss, C. F., & Denzinger, A. (2003). From spatial orientation to food acquisition in echolocating bats. Trends in Ecology and Evolution, 18(8), 386–394. doi:10.1016/S0169-5347(03)00185-X

    Article  Google Scholar 

  • Seeley, T. D. (1995). The wisdom of the hive. Cambridge, MA: Belknap Press of Harvard University Press.

    Google Scholar 

  • Siemers, B. M., & Schnitzler, H.-U. (2004). Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature, 429, 657–661.

    Article  CAS  PubMed  Google Scholar 

  • Siemers, B. M., & Swift, S. (2006). Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behavioral Ecology and Sociobiology, 59(3), 373–380.

    Article  Google Scholar 

  • Siemers, B. M., Stilz, P., & Schnitzler, H.-U. (2001). The acoustic advantage of hunting at low heights above water: Behavioural experiments on the European trawling bats Myotis capaccinii, M. dasycneme and M. daubentonii. Journal of Experimental Biology, 204(22), 3843–3854.

    Google Scholar 

  • Simmons, J. A., Fenton, M. B., & O’Farrell, M. J. (1979). Echolocation and pursuit of prey by bats. Science, 203(4375), 16–21.

    Article  CAS  PubMed  Google Scholar 

  • Simmons, N. B. (2005). Order Chiroptera. In D. E. Wilson, & D. M. Reeder (Eds), Mammal species of the World: A taxonomic and geographic reference, 3rd ed. Volume 1 (pp. 312–529). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Simmons, N. B., & Geisler, J. H. (1998). Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bulletin of the American Museum of Natural History, 235, 2–182.

    Google Scholar 

  • Surlykke, A., & Kalko, E. (2008). Echolocating bats cry out loud to detect their prey. PLoS ONE, 3(4), e2036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Surlykke, A., Pedersen, S. B., Jakobsen, L. (2009a). Echolocating bats emit a highly directional sonar sound beam in the field. Proceedings of the Royal Society of London B: Biological Sciences, 276, 853–860.

    Google Scholar 

  • Surlykke, A., Ghose, K., & Moss, C. M. (2009b). Acoustic scanning of natural scenes by echolocation in the big brown bat, Eptesicus fuscus. Journal of Experimental Biology, 212, 1011–1020.

    Google Scholar 

  • Teeling, E. C. (2009). Hear, hear: The convergent evolution of echolocation in bats? Trends in Ecology and Evolution, 24(7), 351–354. doi:10.1016/j.tree.2009.02.012

    Article  PubMed  Google Scholar 

  • ter Hofstede, H. M., Ratcliffe, J. M., & Fullard, J. H. (2008). The effectiveness of katydid (Neoconocephalus ensiger) song cessation as antipredator defence against the gleaning bat Myotis septentrionalis. Behavioral Ecology and Sociobiology, 63(2), 217–226.

    Article  Google Scholar 

  • ter Hofstede, H. M., Kalko, E. K. V., & Fullard, J. H. (2010). Auditory-based defense against gleaning bats in neotropical katydids (Orthoptera: Tettigoniidae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 196(5), 349–358. doi:10.1007/s00359-010-0518-4

    Article  PubMed  Google Scholar 

  • ter Hofstede, H. M., Goerlitz, H. R., Ratcliffe, J. M., Holderied, M. W., & Surlykke, A. (2013). The simple ears of noctuid moths are tuned to the calls of their sympatric bat community. Journal of Experimental Biology, 216, 3954–3962.

    Article  PubMed  Google Scholar 

  • Trillo, P. A., Athanas, K. A., Goldhill, D. H., Hoke, K. L., & Funk, W. C. (2012). The influence of geographic heterogeneity in predation pressure on sexual signal divergence in an Amazonian frog species complex. Journal of Evolutionary Biology, 26(1), 216–222. doi:10.1111/jeb.12041

    Article  PubMed  Google Scholar 

  • Tuttle, M. D., & Ryan, M. J. (1981). Bat predation and the evolution of frog vocalizations in the Neotropics. Science, 214(4521), 677–678.

    Article  CAS  PubMed  Google Scholar 

  • Tuttle, M. D., & Ryan, M. J. (1982). The role of synchronized calling, ambient light, and ambient noise, in anti-bat-predator behavior of a treefrog. Behavioral Ecology and Sociobiology, 11(2), 125–131.

    Article  Google Scholar 

  • Tuttle, M. D., Taft, L. K., & Ryan, M. J. (1982). Evasive behaviour of a frog in response to bat predation. Animal Behaviour, 30, 393–397.

    Article  Google Scholar 

  • Tuttle, M. D., Ryan, M. J., & Belwood, J. J. (1985). Acoustical resource partitioning by two species of phyllostomid bats (Trachops cirrhosus and Tonatia sylvicola). Animal Behaviour, 33(4), 1369–1371.

    Article  Google Scholar 

  • Yack, J. E., Scudder, G., & Fullard, J. H. (1999). Evolution of the metathoracic tympanal ear and its mesothoracic homologue in the Macrolepidoptera (Insecta). Zoomorphology, 119, 93–103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Ratcliffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jones, P.L., Page, R.A., Ratcliffe, J.M. (2016). To Scream or to Listen? Prey Detection and Discrimination in Animal-Eating Bats. In: Fenton, M., Grinnell, A., Popper, A., Fay, R. (eds) Bat Bioacoustics. Springer Handbook of Auditory Research, vol 54. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3527-7_4

Download citation

Publish with us

Policies and ethics