Skip to main content

The Sensory Coevolution of Moths and Bats

  • Chapter
Comparative Hearing: Insects

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 10))

Abstract

Coevolution is the accumulation of reciprocal adaptations that phylogenetically distant species undergo as a result of their interactions over evolutionary time. Although the classic definition of coevolution requires highly specialized, one-to-one relationships between the participants (e.g., the proboscises of bees and the corollas of orchids, Darwin 1862), today we recognize coevolutionary relationships in a global perspective that does not involve localized interactions (Thompson 1994). Predator-prey relation-ships have formed the basis for many coevolutionary studies, most using the morphology or behavior of the organisms involved to examine the presence of reciprocal adaptations (e.g., the defenses of cladocerans, Dodson 1998; Riessen and Sprules 1990). Coevolutionary processes between predators and prey can be difficult to observe because of the multiple functions that most animal structures serve, and it can be difficult to determine which parts of an organism’s phenotype have been subjected to the specific changes induced by coevolutionary effects (e.g., are the horns of male deer directed against predators or other males?). Vertebrates, in particular, present special problems in the study of coevolution because of their rela-tively long life span and the complexities of their interactions with other organisms, both predators and competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams WB (1971) Intensity characteristics of the noctuid acoustic receptor. J Gen Physiol 58:562–579.

    PubMed  CAS  Google Scholar 

  • Adams WB (1972) Mechanical tuning of the acoustic receptor of Prodenia eridania (Cramer) (Noctuidae). J Exp Biol 57:297–304.

    Google Scholar 

  • Adams WB, Belcher EO (1974) Adaptation in the noctuid acoustic receptor. J Acoust Soc Am 56:S40.

    Google Scholar 

  • Agee HR, Orona E (1988) Studies of the neural basis of evasive flight behavior in response to acoustic stimulation in Heliothis zea (Lepidoptera: Noctuidae): organization of the tympanic nerves. Ann Entomol Soc Am 81:977–985.

    Google Scholar 

  • Alcock J, Bailey WJ (1995) Acoustical communication and mating system of the Australian whistling moth Hecatesia exultans (Noctuidae: Agaristinae). J Zool 237:337–352.

    Google Scholar 

  • Alcock J, Gwynne GT, Dadour IR (1989) Acoustic signalling, territoriality, and mating in whistling moths, Hecatesia thyridion (Agaristidae). J Insect Behav 2:2737.

    Google Scholar 

  • Avise JC (1994) Molecular Markers. Natural History and Evolution. London: Chapman and Hall.

    Google Scholar 

  • Bailey WJ (1978) Resonant wing systems in the Australian whistling moth Hecatesia (Agarasidae (sic), Lepidoptera). Nature 272:444–446.

    Google Scholar 

  • Bailey WJ, Römer H (1991) Sexual differences in auditory sensitivity: mismatch of hearing threshold and call frequency in a tettigoniid (Orthoptera, Tettigoniidae: Zaprochilinae). J Comp Physiol A 169:349–353.

    Google Scholar 

  • Baker TC, Cardé RT (1978) Disruption of gypsy moth male sex pheromone behaviour by high frequency sound. Environ Entomol 7:45–52.

    Google Scholar 

  • Belwood JJ (1988) Foraging behavior, prey selection, and echolocation in phyllostomine bats (Phyllostominae). In: Nachtigall PE, Moore PWB (eds) Animal Sonar. New York: Plenum Press, pp. 601–605.

    Google Scholar 

  • Belwood JJ, Fullard JH (1984) Echolocation and foraging behaviour in the Hawaiian hoary bat, Lasiurus cinereus semotus. Can J Zool 62:2113–2120.

    Google Scholar 

  • Black HL (1972) Differential exploitation of moths by the bats Eptesicus fuscus and Lasiurus cinereus. J Mammal 53:598–601.

    Google Scholar 

  • Boyan GS (1989) Is there a common “bauplan” for insect auditory pathways? In: Erber J, Menzel R, Pflüger H-J, Todt D (eds) Neural Mechanisms of Behavior. Proceedings of the Second International Congress on Neuroethology. Stuttgart: Thieme, p. 73.

    Google Scholar 

  • Boyan GS (1993) Another look at insect audition: the tympanic receptors as an evolutionary specialization of the chordotonal system. J Insect Physiol 39:187–200.

    Google Scholar 

  • Boyan GS, Fullard JH (1986) Interneurones responding to sound in the tobacco budworm moth Heliothis virescens (Noctuidae): morphological and physiological characteristics. J Comp Physiol A 156:391–404.

    Google Scholar 

  • Boyan GS, Fullard JH (1988) Information processing at a central synapse suggests a noise filter in the auditory pathway of the noctuid moth. J Comp Physiol A 164:251–258.

    PubMed  CAS  Google Scholar 

  • Boyan GS. Miller LA (1991) Parallel processing of afferent input by identified interneurones in the auditory pathway of the noctuid moth Noctua pronuba (L.). J Comp Physiol A 168:727–738.

    PubMed  Google Scholar 

  • Boyan GS, Williams L, Fullard JH (1990) Organization of the auditory pathway in the thoracic ganglia of noctuid moths. J Comp Neurol 295:248–267.

    PubMed  CAS  Google Scholar 

  • Brooks DR, McLennan DA (1991) Phylogeny, Ecology, and Behavior. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Cardone B, Fullard JH (1988) Auditory characteristics and sexual dimorphism in the gypsy moth. Physiol Entomol 13:9–14.

    Google Scholar 

  • Clarke JFG (1971) The Lepidoptera of Rapa Island. Smithson Contrib Zool 56:1282.

    Google Scholar 

  • Common IFB (1990) Moths of Australia. Leiden: EJ Brill.

    Google Scholar 

  • Conner WE (1987) Ultrasound: its role in the courtship of the arctiid moth, Cycnia tenera. Experientia 43:1029–1031.

    Google Scholar 

  • Coro F. Alonso N (1989) Cell responses to acoustic stimuli in the pterothoracic ganglion of two noctuoid moths. J Comp Physiol A 165:253–268.

    PubMed  Google Scholar 

  • Coro F, Pérez M (1983) Peripheral interaction in the tympanic organ of a moth. Naturwissenschaften 70:99–100.

    Google Scholar 

  • Coro F, Pérez M (1984) Intensity coding by auditory receptors in Empyreuma pugione (Lepidoptera, Ctenuchidae). J Comp Physiol A 154:287–295.

    Google Scholar 

  • Coro F, Pérez M (1990) Temperature affects auditory receptor response in an arctiid moth. Naturwissenschaften 77:445–447.

    Google Scholar 

  • Coro F, Pérez M, Machado A (1994) Effects of temperature on a moth auditory receptor. J Comp Physiol A 174:517–525.

    Google Scholar 

  • Darwin C (1862) The Various Contrivances by Which Orchids Are Fertilised by Insects, 2nd ed. London: Murray.

    Google Scholar 

  • Dodson S (1988) The ecological role of chemical stimuli for the zooplankton: Predator-avoidance behavior in Daphnia Limno. Oceanography 33:1431–1439.

    Google Scholar 

  • Eggers F (1919) Das thoracale bitympanale Organ einer Gruppe der Lepidoptera Heterocera. Zool Jahrb Anat 41:273–376.

    Google Scholar 

  • Eggers F (1925) Versuche über das Gehör der Noctuiden. Zeit Vergl Physiol 2:297–314.

    Google Scholar 

  • Faure PA, Barclay RMR (1994) Substrate-gleaning versus aerial-hawking: plasticity in the foraging and echolocation behaviour of the long-eared bat, Myotis evotis. J Comp Physiol A 174:651–660.

    PubMed  CAS  Google Scholar 

  • Faure PA, Fullard JH, Barclay RMR (1990) The response of tympanate moths to the echolocation calls of a substrate-gleaning bat, Myotis evotis. J Comp Physiol A 166:843–849.

    Google Scholar 

  • Faure PA, Fullard JH, Dawson JW (1993) The gleaning attacks of the northern long-eared bat, Myotis septentrionalis, are relatively inaudible to moths. J Exp Biol 178:173–189.

    PubMed  CAS  Google Scholar 

  • Fenton MB (1990) The foraging ecology of animal-eating bats. Can J Zool 68:411–422.

    Google Scholar 

  • Fenton MB, Bell GP (1981) Recognition of species of insectivorous bats by their echolocation calls. J Mammal 62:233–243.

    Google Scholar 

  • Fenton MB, Fullard JH (1979) The influence of moth hearing on bat echolocation strategies. J Comp Physiol 132:77–86.

    Google Scholar 

  • Fenton MB, Racey P, Rayner JMV (1987) (eds) Recent Advances in the Study of Bats. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Fenton MB, Audet A, Obrist MK, Rydell J (1995) Signal strength, timing, and self-deafening: the evolution of echolocation in bats. Paleobiology 21:229–242.

    Google Scholar 

  • Forbes WTM (1916) On the tympanum of certain Lepidoptera.. Psyche 23:183–192.

    Google Scholar 

  • Fullard JH (1982) Echolocation assemblages and their effects on moth auditory systems. Can J Zool 60:2572–2576.

    Google Scholar 

  • Fullard JH (1984a) External auditory structures in two species of neotropical notodontid moths. J Comp Physiol A 155:625–632.

    Google Scholar 

  • Fullard JH (1984b) Acoustic relationships between tympanate moths and the Hawaiian hoary bat (Lasiurus cinereus semotus). J Comp Physiol A 155:795–801.

    Google Scholar 

  • Fullard JH (1987a) Sensory ecology and neuroethology of moths and bats: interactions in a global perspective. In: Fenton MB, Racey P, Rayner JMV (eds) Recent Advances in the Study of Bats. Cambridge, UK: Cambridge University Press, pp. 244–272.

    Google Scholar 

  • Fullard JH (1987b) The defensive function of auditory enhancers in the neotropical moth Antaea lichyi (Lepidoptera: Notodontidae). Can J Zool 65:2042–2046.

    Google Scholar 

  • Fullard JH (1988) The tuning of moth ears. Experientia 44:423–428.

    Google Scholar 

  • Fullard JH (1994) Auditory changes in moths endemic to a bat-free habitat. J Evol Biol 7:435–445.

    Google Scholar 

  • Fullard JH, Belwood JJ (1988) The echolocation assemblage: acoustic ensembles in a neotropical habitat. In: Nachtigall PE, Moore PWB (eds) Animal Sonar. NATO ASI Series, Series A: Life Sciences, Vol. 156. New York: Plenum Press, pp. 639–643.

    Google Scholar 

  • Fullard JH, Dawson JD (1997) The echolocation calls of the spotted bat Euderma maculatum are relatively inaudible to moths. J Exp Biol 200:129–137.

    PubMed  Google Scholar 

  • Fullard JH, Fenton MB (1980) Echolocation signal design as a potential countermeasure against moth audition. In: Busnel RG, Fish JF (eds) Animal Sonar Systems. New York: Plenum Press, pp. 899–900.

    Google Scholar 

  • Fullard JH, Thomas DW (1981) Detection of certain African, insectivorous bats by sympatric, tympanate moths. J Comp Physiol 143:363–368.

    Google Scholar 

  • Fullard JH, Yack JE (1993) The evolutionary biology of insect hearing. Trends Ecol Evol 8:248–252.

    PubMed  CAS  Google Scholar 

  • Fullard JH, Fenton MB, Furlonger CL (1983) Sensory relationships of moths and bats sampled from two Nearctic sites. Can J Zool 61:1752–1757.

    Google Scholar 

  • Fullard JH, Koehler C, Surlykke A, McKenzie NL (1991) Echolocation ecology and flight morphology of insectivorous bats (Chiroptera) in south-western Australia Aust J Zool 39:427–438.

    Google Scholar 

  • Fullard JH, Dawson JW, Otero LD, Surlykke A (1997) Bat-deafness in day-flying moths (Lepidoptera, Notodontidae, Dioptinae). J Comp Physiol A 181:477–483.

    PubMed  CAS  Google Scholar 

  • Ghiradella H (1971) Fine structure of the noctuid moth ear 1. The transducer area and connections to the tympanic membrane in Feltia subgothica Haworth. J Morphol 134:21–46.

    PubMed  CAS  Google Scholar 

  • Griffin DR (1971) The importance of atmospheric attenuation for the echolocation of bats (Chiroptera). Anim Behav 19:55–61.

    PubMed  CAS  Google Scholar 

  • Hasenfuss I (1997) Precursor structures and evolution of tympanal organs in Lepidoptera (Insecta, Pterygota). Zoomorphology 117:155–164.

    Google Scholar 

  • Haskell PT (1961) Insect Sounds. London: Witherby.

    Google Scholar 

  • Heitmann, H (1934) Die Tympanalorgane flugunfähiger Lepidopteren und die Korrelation in der Ausbildung der Flugel und der Tympanalorgane. Zool Jahrb Anat Ontogen 59:135–200.

    Google Scholar 

  • Holloway JD, Bradley JD, Carter DJ (1987) Lepidoptera. Vol 1. In: Betts C.R. (ed.) C.I.E. Guides to Insects of Importance to Man (Wallingford, U.K. CAB International)

    Google Scholar 

  • Hoy R, Nolen T, Broadfueher P (1989) The neuroethology of acoustic startle and escape in flying insects. J Exp Biol 146:287–306.

    PubMed  CAS  Google Scholar 

  • Jones G (1990) Prey selection by the greater horseshoe bat (Rhinolophus ferrumequinum): optimal foraging by echolocation? J Anim Ecol 59:587–602.

    Google Scholar 

  • Jones G (1992) Bats vs moths: studies on the diets of rhinolophid and hipposiderid bats support the allotonic frequency hypothesis. In: Horácek I, Vohralík V (eds) Prague Studies in Mammalogy. Prague: Charles University Press, pp. 87–92.

    Google Scholar 

  • Kennel J von, Eggers F (1933) Die abdominalen Tympanalorgane der Lepidopteren. Zool Jahrb Abt Anat 57:1–104.

    Google Scholar 

  • Kick SA, Simmons JA (1984) Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation. J Neurosci 4:2725–2737.

    PubMed  CAS  Google Scholar 

  • Lawrence BD, Simmons JA (1982) Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. J Acoust Soc Am 71:585–590.

    PubMed  CAS  Google Scholar 

  • Lechtenberg R (1971) Acoustic response of the B cell in noctuid moths. J Insect Physiol 17:2395–2408.

    Google Scholar 

  • Leonard ML, Fenton MB (1984) Echolocation calls of Euderma maculatum (Vespertilionidae): use in orientation and communication. J Mammal 65:122–126.

    Google Scholar 

  • Lewis FP, Fullard JH (1996) The neurometamorphosis of the ear in the gypsy moth, Lymantria dispar and its homologue in the earless forest tent caterpillar moth, Malacosoma disstria. J Neurobiol 31:245–262.

    PubMed  CAS  Google Scholar 

  • Lewis FP, Fullard JH, Morrill SB (1993) Auditory influences on the flight behaviour of moths in a Nearctic site II. Flight times, heights and erraticism. Can J Zool 71:1562–1568.

    Google Scholar 

  • Libersat F, Hoy RR (1991) Ultrasonic startle behavior in bushcrickets (Orthoptera: Tettigoniidae). J Comp Physiol A 169:507–514.

    PubMed  CAS  Google Scholar 

  • Madsen BM, Miller LA (1987) Auditory input to motor neurones of the dorsal longitudinal flight muscles of the noctuid moth (Barathra brassicae L). J Comp Physiol A 160:23–31.

    Google Scholar 

  • Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and Behavioral Physiology. Berlin: Springer-Verlag, pp. 332–353.

    Google Scholar 

  • Miller JS (1989) Euchontha Walker and Pareuchontha, new genus (Lepidoptera; Dioptidae) a revision, including description of three new species, and discussion of a male forewing modification. Am Mus Novitates 2938:1–41.

    Google Scholar 

  • Miller JS (1991) Cladistics and classification of the Notodontidae (Lepidoptera: Noctuoidea) based on larval and adult morphology. Bull Am Mus Natl Hist 204:1–230.

    Google Scholar 

  • Miller LA, Olesen J (1979) Avoidance behaviour in green lacewings to hunting bats and ultrasound. J Comp Physiol 131:113–120.

    Google Scholar 

  • Monroe BL, Sibley CG (1993) A World Checklist of Birds. New Haven, CT: Yale University Press.

    Google Scholar 

  • Morrill SB, Fullard JH (1992) Auditory influences on the flight behaviour of moths in a Nearctic site. I. Flight tendency. Can J Zool 70:1097–1101.

    Google Scholar 

  • Murphey RK, Bacon JP, Sakaguchi DS, Johnson SE (1983) Transplantation of cricket sensory neurons to ectopie locations: arborizations and synaptic connections. J Neurosci 3:659–672.

    PubMed  CAS  Google Scholar 

  • Neuweiler G (1984) Foraging, echolocation and audition in bats. Naturwissenschaften 71:446–455.

    Google Scholar 

  • Neuweiler G (1990) Auditory adaptations for prey capture in echolocating bats. Physiol Rev 70:615–641.

    PubMed  CAS  Google Scholar 

  • Novick A (1977) Acoustic orientation. In: Wimsatt WA (ed) Biology of Bats, Vol. III. New York: Academic Press, pp. 73–287.

    Google Scholar 

  • Niiesch H (1957) Die Morphologie des Thorax von Telea polyphemus Cr (Lepid). I. Nervensystem. Zool Jahrb 75:615–642.

    Google Scholar 

  • Obrist MK (1995) Flexible bat echolocation: the influence of individual habitat and conspecifics on sonar signal design. J Comp Physiol A 36:207–219.

    Google Scholar 

  • Oldfield BP (1985) The tuning of auditory receptors in bushcrickets. Hear Res 17:27–35.

    PubMed  CAS  Google Scholar 

  • Paul DH (1973) Central projections of the tympanic fibres in noctuid moths. J Insect Physiol 19:1785–1792.

    PubMed  CAS  Google Scholar 

  • Paul DH (1974) Responses to acoustic stimulation of thoracic interneurons in noctuid moths. J Insect Physiol 20:2205–2218.

    PubMed  CAS  Google Scholar 

  • Pearson KG, Hedwig B, Wolf H (1989) Are the hindwing chordotonal organs elements of the locust flight pattern generator? J Exp Biol 144:235–255.

    Google Scholar 

  • Pérez M, Coro F (1984) Physiological characteristics of the tympanal organ in noc-tuoid moths. I. Responses to brief acoustic pulses. J Comp Physiol A 154:441–447.

    Google Scholar 

  • Pérez M, Coro F (1986) Effects of picrotoxin on the tympanic organ of a noctuid moth. Naturwissenschaften 73:501–502.

    Google Scholar 

  • Pérez M, Zhantiev RD (1976) Functional organization of the tympanal organ of the flour moth, Ephestia kuehniella. J Insect Physiol 22:1267–1273.

    Google Scholar 

  • Poché RM (1981) Ecology of the spotted bat (Euderma maculatum) in southwest Utah. Utah Dept Natur Res Publ No. 81–1.

    Google Scholar 

  • Popper AN, Fay RR (1995) (eds) Hearing by Bats. New York: Springer-Verlag.

    Google Scholar 

  • Pumphrey RJ (1940) Hearing in insects. Biol Rev 15:107–132.

    Google Scholar 

  • Richards AG (1932) Comparative skeletal morphology of the noctuid tympanum. Entomol Am 13:1–43.

    Google Scholar 

  • Riede K., Kämper G, Höfler I, (1990) Tympana, auditory thresholds, and projection areas of tympanal nerves in singing and silent grasshoppers (Insecta, Acridoidea). Zoomorphology 109:223–230.

    Google Scholar 

  • Riessen HP, Sprules WG (1990) Demographic costs of antipredator defenses in Daphnia pulex. Ecology 71:1536–1546.

    Google Scholar 

  • Roeder KD (1966) Interneurons of the thoracic nerve cord activated by tympanic nerve fibers in noctuid moths. J Insect Physiol 12:1227–1244.

    PubMed  CAS  Google Scholar 

  • Roeder KD (1967) Nerve Cells and Insect Behavior. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Roeder KD (1970) Episodes in insect brains Am Sci 58:378–389.

    PubMed  CAS  Google Scholar 

  • Roeder KD (1974) Acoustic sensory responses and possible bat-evasion tactics of certain moths. In Burt MDB (ed) Proceedings of the Canadian Society of Zoologists Annual Meeting, Fredericton, NB, June 2–5, 1974. Fredericton, NB: University of New Brunswick Press, pp. 71–78.

    Google Scholar 

  • Roeder KD, Treat AE (1957) Ultrasonic reception by the tympanic organ of noctuid moths. J Exp Zool 134:127–158.

    PubMed  CAS  Google Scholar 

  • Roeder KD, Treat AE (1962) The acoustic detection of bats by moths. Verh XIth Intl Congr Entomol 3:7–11.

    Google Scholar 

  • Roeder KD, Treat AE, Vandeberg JS (1968) Auditory sense in certain sphingid moths. Science 159:331–333.

    PubMed  CAS  Google Scholar 

  • Rydell J., Arletazz R (1994) Low frequency echolocation enables the bat Tadarida teniotis to feed on tympanate insects. Proc R Soc Lond Biol Sci 257:175–178.

    CAS  Google Scholar 

  • Sanderford MV, Conner WE (1990) Courtship sounds of the polka-dot wasp moth, Syntomeida epilais. Naturwissenschaften 77:345–347.

    Google Scholar 

  • Sattler K (1991) A review of wing reduction in Lepidoptera. Bull Br Mus Nat Hist (Entomol) 60:243–288.

    Google Scholar 

  • Schiolten P, Larsen ON, Michelsen A (1981) Mechanical time resolution in some insect ears. J Comp Physiol 143:289–295.

    Google Scholar 

  • Scoble MJ (1992) The Lepidoptera. New York: Oxford University Press.

    Google Scholar 

  • Simon C (1987) Hawaiian evolutionary biology: an introduction. Trends Ecol Evol 2:175–178.

    PubMed  CAS  Google Scholar 

  • Spangler HG (1988) Moth hearing, defense, and communication. Ann Rev Entomol 33:39–81.

    Google Scholar 

  • Surlykke A (1984) Hearing in notodontid moths: a tympanic organ with a single auditory neurone. J Exp Biol 113:323–335.

    Google Scholar 

  • Surlykke A (1986) Moth hearing on the Faroe Islands, an area without bats. Physiol Entomol 11:221–225.

    Google Scholar 

  • Surlykke A, Fullard JH (1989) Hearing in the Australian whistling moth, Hecatesia thyridion. Naturwissenschaften 76:132–134.

    Google Scholar 

  • Surlykke A, Gogola M (1986) Stridulation and hearing in the noctuid moth Thecophora fovea (Tr.). J Comp Physiol A 159:267–273.

    Google Scholar 

  • Surlykke A, Miller LA (1982) Central branchings of three sensory axons from a moth ear (Agrotis segetum, Noctuidae). J Insect Physiol 28:357–364.

    Google Scholar 

  • Surlykke A., Treat AE (1995) Hearing in wintermoths. Naturwissenschaften 82:382–384.

    CAS  Google Scholar 

  • Surlykke A, Larsen ON, Michelsen A (1988) Temporal coding in the auditory receptor of the moth ear. J Comp Physiol A 162:367–374.

    Google Scholar 

  • Swinton AH (1877) On an organ of hearing in insects, with special reference to the Lepidoptera. Entomol Mon Mag 14:121–126.

    Google Scholar 

  • Thompson JN (1994) The Coevolutionary Process. Chicago: University of Chicago Press.

    Google Scholar 

  • Tomich PQ (1986) Mammals in Hawai’i. Honolulu, HI: Bishop Museum Press.

    Google Scholar 

  • Tougaard J (1996) Energy detection and temporal integration in the noctuid Al auditory receptor. J Comp Physiol A 178:669–677.

    Google Scholar 

  • Treat AE, Roeder KD (1959) A nervous element of unknown function in the tympanic organs of noctuid moths. J Insect Physiol 3:262–270.

    Google Scholar 

  • Tuttle MD, Ryan MJ (1981) Bat predation and the evolution of frog vocalizations in the Neotropics. Science 203:16–21.

    Google Scholar 

  • Wai-Ping V, Fenton MB (1989) Ecology of spotted bat (Euderma maculatum) roosting and foraging behavior. J Mammal 70:617–622.

    Google Scholar 

  • Wallner WE, McManus KA (1988) (eds) Lymantriidae: a comparison of features of New and Old World tussock moths. U.S. Department of Agriculture General Technical Report NE-123.

    Google Scholar 

  • Waters DA (1996) The peripheral auditory characteristics of noctuid moths: information encoding and endogenous noise. J Exp Biol 199:857–868.

    PubMed  Google Scholar 

  • Waters DA, Jones G (1996) The peripheral auditory characteristics of noctuid moths: responses to the search-phase echolocation calls of bats. J Exp Biol 199:847–856.

    PubMed  Google Scholar 

  • Whitaker JO, Black HL (1976) Food habits of cave bats from Zambia, Africa. J Mammal 57:199–204.

    Google Scholar 

  • Whitaker JO, Tomich PQ (1983) Food habits of the hoary bait, Lasiurus cincereus, from Hawaii. J Mammal 64:151–152.

    Google Scholar 

  • White FB (1877) (Untitled). Nature 15:293.

    Google Scholar 

  • Willott JF (1991) Aging and the auditory system. San Diego, CA: Singular Publishers.

    Google Scholar 

  • Woodsworth GC, Bell GP, Fenton MB (1981) Observations on the echolocation, feeding behaviour, and habitat use of Euderma maculatum in south central British Columbia. Can J Zool 59:1099–1102.

    Google Scholar 

  • Yack JE (1988) Seasonal partitioning of tympanate moths in relation to bat activity. Can J Zool 66:753–755.

    Google Scholar 

  • Yack JE (1992) A multiterminal stretch receptor, chordotonal organ and hair plate at the wing hinge of Manduca sexta: Unravelling the mystery of the noctuid moth ear B cell. J Comp Neurol 324:500–508.

    PubMed  CAS  Google Scholar 

  • Yack JE, Fullard JH (1990) The mechanoreceptive origin of insect tympanal organs: a comparative study of similar nerves in tympanate and atympanate moths. J Comp Neurol 300:523–534.

    PubMed  CAS  Google Scholar 

  • Yack JE, Fullard JH (1993a) What is an insect ear? Ann Entomol Soc 86:677–682.

    Google Scholar 

  • Yack JE, Fullard JH (1993b) Proprioceptive activity of the wing-hinge stretch receptor in Manduca sexta and other atympanate moths: a study of the noctuoid moth ear B cell homologue. J Comp Physiol A 173:301–307.

    Google Scholar 

  • Yack JE, Roots BI (1992) The metathoracic wing-hinge chordotonal organ of an atympanate moth Actias luna (Lepidoptera. Saturniidae): a light-and electron-microscopic study. Cell Tissue Res 267:455–471.

    PubMed  CAS  Google Scholar 

  • Yager DD (1990) Sexual dimorphism of auditory function and structure in preying mantises (Mantodea; Dictyoptera). J Zool (Lond) 221:517–537.

    Google Scholar 

  • Yager DD, May ML (1990) Ultrasound-triggered, flight-gated evasive maneuvers in the praying mantis, Parasphendale agrionina (Gerst.). II. Tethered flight. J Exp Zool 152:41–58.

    CAS  Google Scholar 

  • Zbinden K, Zingg P (1986) Search and hunting signals of echolocating European free-tailed bats, Tadarida teniotis, in southern Switzerland. Mammalia 50:9–25.

    Google Scholar 

  • Zimmerman EC (1958) Insects of Hawaii, Vol. 7. Macrolepidoptera. Honolulu, HI: University of Hawaii Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fullard, J.H. (1998). The Sensory Coevolution of Moths and Bats. In: Hoy, R.R., Popper, A.N., Fay, R.R. (eds) Comparative Hearing: Insects. Springer Handbook of Auditory Research, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0585-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0585-2_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6828-4

  • Online ISBN: 978-1-4612-0585-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics